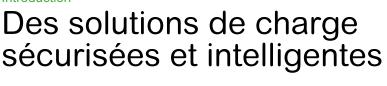


Solutions de charges pour véhicules électriques

Guide avril 2021


Guide 2021

Solutions de charges pour véhicules électriques

Introduction

Des solutions de charge sécurisées et intelligentes	
Jne opportunité pour la filière électrique	
Les différents modes de charge et les prises associées	
Concevoir une station de charge	
Quelle architecture de charge choisir ?	
Normes et réglementations	
_a gestion de l'énergie	10
Solutions de charge pour véhicules électriq	ues
Panorama	
EVlink Wallbox, EVlink Wallbox Plus	
EVlink Smart Wallbox	
EVlink Parking	
EVlink City	
EVlink Chargeur rapide	
Accessoires communs	26
Castian de llánorsia	
Gestion de l'énergie	
EVlink LMS	35
T	
Formations	
Stages de formation	41
Services	
os questionnements	43
Les réponses de Schneider Electric	
Compléments techniques	
EVlink Wallbox	46
EVlink Wallbox Plus	
EVlink Smart Wallbox	48
EVlink Parking	49
EVlink City	50
EVlink Chargeur rapide	
EVlink LMS	52
	
Témoignage client	
Expérience Renault au Technocentre de Guyancourt	56

Charger un véhicule électrique n'est pas un geste anodin.

C'est pourquoi l'opération nécessite un système spécifiquement conçu à cet effet.

Choisir une infrastructure de charge sécurisée

Le système de charge doit garantir la totale sécurité de l'utilisateur, du véhicule, ainsi que de l'installation électrique à laquelle il est raccordé. Il doit également autoriser une charge quotidienne et pour plusieurs heures, et cela sans impacter le fonctionnement des autres équipements reliés à la même installation de distribution électrique. Cette sécurité est assurée par divers dispositifs parmi lesquels une coupure automatique de l'alimentation si le câble est débranché ou si la batterie a fini de charger.

Maîtriser la consommation énergétique

Des options d'intelligence embarquée dans les infrastructures de charge permettent d'aller au bout de la démarche environnementale en optimisant les consommations énergétiques et en améliorant le bilan carbone. Il est possible, par exemple, d'opérer un délestage automatique pour éviter de dépasser la puissance souscrite auprès du fournisseur d'énergie ou encore de différer le lancement de la charge lorsque l'énergie coûte moins cher.

Demain, il sera également possible d'identifier la source de l'énergie disponible sur le réseau et privilégier les énergies renouvelables au moment de la charge.

Parallèlement, le véhicule pourra être utilisé comme source d'énergie d'appoint, l'énergie stockée dans ses batteries étant utilisée pour soutenir le réseau en cas de pic de consommation ou en cas d'urgence (coupure de câble, orage). En cela, le véhicule électrique s'intègre parfaitement dans les futurs réseaux intelligents (Smart Grids).

Une opportunité pour la filière électrique

Le développement du véhicule électrique concerne l'ensemble de la filière. C'est un nouveau marché qui s'est ouvert aux professionnels.

Aujourd'hui, Schneider Electric Formation a accueilli dans ses stages "Infrastructure de charge pour véhicules électriques" près de 500 installateurs.

Ils se positionnent auprès de leurs clients comme des experts, capables d'étudier, de dimensionner et d'installer les solutions les mieux adaptées à leurs besoins.

Des installateurs partenaires

Schneider Electric s'appuie sur un réseau d'installateurs formés à la conception et à la mise en œuvre d'infrastructures de charge. Schneider Electric valorise ces installateurs engagés dans cette démarche :

• en les rendant visibles depuis le site internet de Schneider Electric en tant qu'installateurs certifiés VE.

Un état des lieux préalable à l'installation des solutions de charge

Les nouveaux enjeux vont bien au-delà de la fourniture et de la mise en œuvre de bornes de charge. Ces nouveaux équipements nécessitent en effet une vérification préalable de l'état des installations existantes et de leur dimensionnement, des conseils et recommandations sur l'éventuelle mise en conformité de l'installation électrique, la vérification de l'adéquation entre l'abonnement souscrit par le client et ses habitudes de consommation...

Proposer des options à forte valeur ajoutée

En fonction du profil de son client, particulier, chef d'entreprise, collectivité locale, responsable de flotte de véhicules, le professionnel pourra également préconiser des options à forte valeur ajoutée visant à optimiser les consommations énergétiques, superviser l'état de l'infrastructure de charge, prioriser la charge des véhicules selon leur usage, gérer un système de paiement (pour le stationnement sur voirie notamment)...

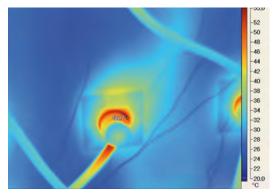
Guide EVlink -2021 Life is On | Schneider Electric

3

Les différents modes de charge et les prises associées

Mode	1		2		3		4	
	CA Prise non dé	diée	CA disposit de cont Prise non dé avec disposit incorporé au	rôle diée tif de contrôle	Prise sur circ	puit dédié	Station coura	ant continu
	domestique	ise de courant monophasée, teurs de terre tion.	domestique monophasée, avec conducteurs de terre et d'alimentation.		Socle pour prise de courant spécifique sur un circuit dédié. Une fonction de contrôle de charge est intégrée au socle de la prise.		câble fixe sp du courant c Le chargeur	terne équipé d'un vécifique et délivrant continu. intègre la fonction et la protection
Recommandations								
		ectric ne as cette solution sons de sécurité.	être limitée à préconisation l'IGNES et du 15-722 / UTE Cela impliqu	L'intensité de charge devra être limitée à 8 A suivant les préconisations du Gimelec, l'IGNES et du guide UTE C 15-722 / UTE C 17-722. Cela implique une durée de charge beaucoup plus longue. Solution préconisée par Schneider Electric C'est le seul mode garantissant le plus haut niveau de sécurité grâce à la communication établie entre le véhicule et l'infrastructure de charge : • protection contre les contacts		Schneider Electric propose des solutions de charge rapide utilisant les prises de CHAdeMo ou/et Combo2.		
	du réseau éle non conform	ectrique préexistar e aux dernières no absence ou non co	des biens est tributaire de l'état nt, lequel est souvent vétuste et		directs,	é de branchement		
Prises								
Côté infrastructure								
					000			
Type de prise	prise domest	tique 2P+T	prise domes	tique 2P+T	type 2		câble solida	ire de la borne
Côté véhicule	,	r	_	r		f		f
							©	
Type de prise	type 1	type 2	type 1	type 2	type 1	type 2	CHAdeMO	Combo 2 - CCS
Alimentation	courant alternatifmono	• courant alternatif • mono ou tri	• courant alternatif • mono	• courant alternatif • mono ou tri	• courant alternatif • mono	courant alternatif mono ou tri	courant continu	courant continu
Courant maxi.	32 A	63 A	32 A	63 A	32 A	63 A	125 A	125 A
Tension maxi.	250 V	500 V	250 V	500 V	250 V	500 V	500 V	500 V

Kilomètres d'autonomie récupérés pour 1 h de charge(1)


Mode 3		Mode 4			
3,7 kW	7 kW	11 kW	22 kW	24 kW	50 kW
20 km	40 km	65 km	130 km	140 km	300 km

(1) Base de consommation : 17 kWh au 100 km. Données valables tant que le niveau de charge de la batterie n'a pas atteint 80% de sa capacité.

Pourquoi éviter l'utilisation d'une prise domestique pour les voitures électriques ?

La charge normale d'une voiture électrique requiert une puissance de 4000 W pendant une durée d'environ 8 heures (une nuit entière). Les prises domestiques ne sont pas destinées à être sollicitées de manière intensive et prolongée, particulièrement pour une charge non linéaire telle que le véhicule électrique. Pour comparaison, les appareils de puissance similaire, tels qu'un chauffe-eau, sont câblés directement depuis le tableau électrique et disposent d'un circuit et d'une protection dédiés. Certaines voitures sont livrées avec un câble compatible avec une prise domestique. Ce câble spécifique, qui doit intégrer une limitation de l'intensité à 8 A, ne doit être utilisé qu'en secours (conformément aux spécifications de l'IGNES et du Gimélec).

L'utilisation d'une prise domestique reste une solution de dépannage, avec une durée de charge beaucoup plus longue.

Surchauffe d'une prise standard visualisée en laboratoire par une caméra thermique avec une intensité de 16 A après plusieurs cycles de charge journaliers.

Pourquoi Schneider Electric recommande les modes 3 ou 4 pour les voitures 100 % électriques ?

Schneider Electric recommande les mode 3 et 4 qui garantissent un maximum de sécurité et des performances de charge optimales.

Pour plus de fonctionnalité

- Les modes 3 et 4 permettent d'établir une communication permanente entre le véhicule électrique et l'infrastructure de charge. Le mode 3 nécessite une prise dédiée à cette usage (prise type 2 équipée d'un obturateur pour être 100 % conforme avec la norme NF C 15-100). Dans le mode 4, le câble est solidaire de la borne de charge.
- Pour des raisons d'économie et de sécurité, il devient alors possible d'ajuster en temps réel la quantité d'énergie attribuée à chaque véhicule en fonction de paramètres extérieurs, tels que :
- le nombre de véhicule à charger simultanément,
- le courant maximal que la borne peut fournir,
- la consommation instantanée de l'installation, etc.
- Ils sont les seuls modes à permettre une gestion de l'énergie avancée et restent donc indispensables pour l'intégration des infrastructures de charge dans les réseaux intelligents Smart Grid.

Pour plus de sécurité

- Par opposition avec la prise domestique des modes 1 et 2, avec les mode 3 et 4, le branchement et la déconnexion du câble se font hors tension. Une fois le véhicule raccordé, la borne vérifie l'intégrité de tout le système de charge avant d'injecter le courant.
- Le mode 3 et 4 prévoient :
- la mise à la terre du véhicule pendant la charge,
- l'autodiagnostic de la borne avec coupure automatique en cas de défaut,
- le diagnostic du circuit de charge du véhicule avec coupure automatique en cas de défaut,
- la limitation du courant de la charge selon le diamètre du câble de charge (pour le mode 3),
- la protection contre surcharge, court-circuit, défaut d'isolement par disjoncteur et protection différentielle externes obligatoires.

5

Concevoir une station de charge

Les questions à se poser

Les besoins des usagers

- Une station de charge doit répondre aux besoins des usagers qui la fréquentent :
- temps prévu de stationnement,
- distance parcourue ou à parcourir,
- heures d'arrivée et de départ...
- Chaque utilisateur ayant un profil de mobilité différent, on ne peut que définir des principes d'usages.
- Selon la puissance de charge offerte, on observera différents types de rotations de véhicules :
- lentes en résidentiel et en parking salariés,
- rapides en supermarchés,
- très rapides sur les aires d'autoroute.
- La tarification et les options de réservations constituent des leviers importants pour influencer le comportement des usagers afin d'optimiser la rotation et obtenir la fréquentation souhaitée.

Correspondance entre la typologie du lieu d'implantation de la station et la puissance de charge souhaitable

type de lieu	puissance (kW)				
	3	7	22	50	
résidentiel	***	***			
entreprise véhicules de salariés	**	***			
entreprise véhicules de service		***	**		
supermarché - clients		***	**	**	
voirie	*	***	**	**	
aire d'autoroute				***	
aire de covoiturage	*	***			

Aménagement

Au mur ou au sol?

• Lorsque c'est possible, préférer une fixation murale (avec des coffrets de charge) plutôt qu'au sol (avec des bornes sur pieds) afin de minimiser les coûts et faciliter les travaux

Dimensionnement

• Commencer avec une station de petite taille (2 ou 4 points de charge par exemple), en prévoyant des possibilités d'évolution, notamment sur le réserve de puissance et de place.

Disposition des points de charge

- Toujours regrouper les points de charge sous la forme d'un îlot, d'une part pour minimiser les coûts et d'autre part pour rendre la station bien visible des utilisateurs.
- Pour une station comportant des points de charge de puissances différentes, les regrouper par puissance au sein de l'îlot.

Signalisation de la station

- Ûne station de charge a besoin d'être visible et identifiée. Pour cela, un aménagement avec une signalétique verticale (panneaux) et horizontale (marquage au sol) est nécessaire. De plus, une signalisation aux alentours de la station permet de guider l'utilisateur.
- Le livre vert édition 2014 définit clairement ce type de signalisation.

Connexion électrique et informatique

Diagnostic électrique

- Pour une installation existante, vérifier le régime de neutre présent car seuls les régimes TN et TT sont autorisés. Le régime de neutre IT peut nécessiter l'ajout d'un transformateur d'isolement pour la charge de certains véhicules.
- Pour une station de taille importante, identifier un point source d'alimentation proche du TGBT pour éviter tout redimensionnement de l'existant et toute perturbation des appareils en place.
- Pour une station de grande taille, il est préférable de créer un tableau divisionnaire dédié et identifié, avec une réserve permettant l'ajout de points de charge supplémentaires ultérieurement.

Diagnostic Informatique

- Une connexion à internet est nécessaire pour assurer notamment la supervision et le contrôle d'accès des bornes.
- Lorsqu'un réseau filaire est disponible, s'assurer au préalable qu'il sera possible d'y raccorder les bornes (règles de sécurité informatique).
- \bullet Dans ce cas, prévoir un accès réseau dédié : connexion sans fil via une ou plusieurs carte SIM de type "machine to machine". Idéalement mesurer l'intensité du signal 3G / 4G.

Dimensionnement électrique

- Toujours effectuer un dimensionnement avec un coefficient de foisonnement égal à 1 pour l'ensemble de la station. Les solution de pilotage de puissance permettent d'optimiser la courbe de charge générale de la station.
- Chaque point de charge doit être alimenté avec une ligne et une protection dédiée.
- Lorsque les protections sont intégrées dans la borne de charge, inutile de se préoccuper des courbes des disjoncteurs ou des types de différentiels. L'installateur effectuera les notes de calcul nécessaires pour placer la bonne protection dans le tableau électrique.
- La mesure de la valeur de terre doit être inférieure à 100 ohms et en pratique, le plus proche possible de zéro.

Installation Informatique

- Lorsqu'on met en place un réseau dédié pour les bornes, deux options sont possibles :
- création d'une infrastructure de courant faible avec une ligne ADSL dédiée,
- mise en place d'un modem G4 dédié
- Pour une infrastructure filaire, toutes les bornes sont reliées en réseau avec un accès à internet.
- Pour une infrastructure sans fil, un modem 3G / 4G peut être alloué à une station entière. On réalise alors une infrastructure locale pour la station

Génie civil

Tranchées

• Pour une installation au sol, toujours privilégier une installation sur sol végétal, ce qui réduit les coûts de la tranchée.

Regards de tirage

• Identifier la mise en place de regards de tirage permettant d'agrandir une station depuis le point d'alimentation sans avoir à ouvrir de nouveau la tranchée.

Fourreaux

• Quel que soit le matériel choisi, chaque plot béton recevant une borne de charge doit pouvoir recevoir à la fois un fourreau de courant fort (rouge) et un fourreau de courant faible (vert).

Fonctionnalités

Type de prise

- Comme précisé dans le livre vert édition 2014, les prises type E (domestique) et les T2S répondent à l'ensemble des normes françaises, quel que soit le lieu d'implantation de la station de charge.
- Pour garantir l'universalité de la station de charge, proposer les deux types de prises par point de charge : domestique + Prise T2S.

Puissance de charge

- En fonction du nombre de points de charge et de véhicules électriques susceptibles de se charger en même temps, il faut vérifier le bon dimensionnement de l'installation électrique en amont ou mettre en place des stratégies de gestion statique ou dynamique de l'énergie (puissance maximale).
- En pratique, pour des stations de charge comportant plusieurs points de charge, un panachage de points à 7 kW et 22 kW constitue la meilleure option. Ainsi tous les véhicules électriques pourront s'y charger.

Identification de l'utilisateur

- L'identification de l'utilisateur est le dispositif permettant d'effectuer le contrôle d'accès au point de charge et donc au service de charge.
- Le livre vert recommande de choisir des bornes équipées de lecteur de badges RFID à la norme MIFARE ISO 14443-A.
- Pour offrir une plus grande souplesse d'utilisation et d'interopérabilité, l'accès au service de charge doit être rendu possible à partir du Smartphone : application dédiée ou NFC, QR code, lien raccourci indiqué sur le point de charge.

Interface homme / machine

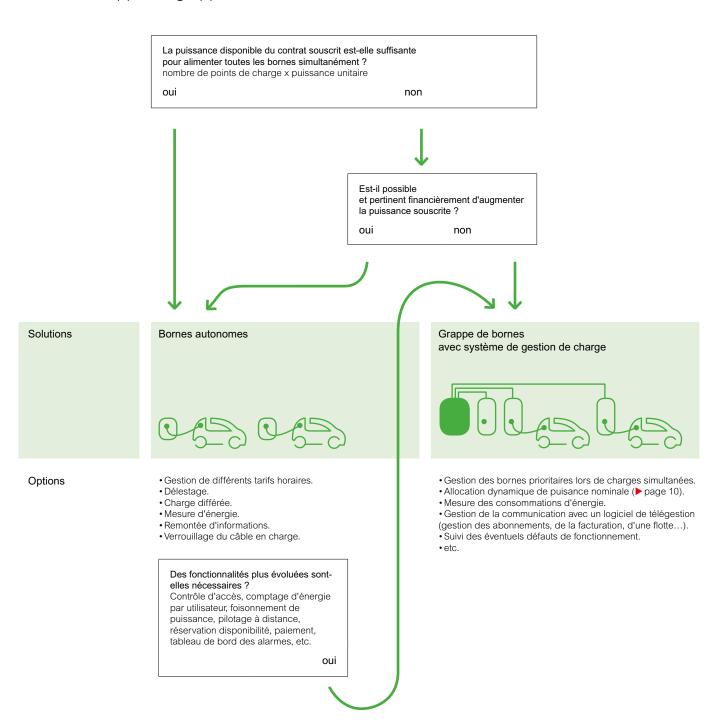
- L'IHM est le lien physique entre l'utilisateur et le point de charge. Plusieurs solutions sont possibles :
- mécanique = boutons
- voyants de couleur,
- écran tactile intégré
- Une IHM composée de voyants représente le meilleur ratio information / coûts.
- Pour communiquer des informations enrichies à l'utilisateur, pensez à son Smartphone.

Protocole de communication

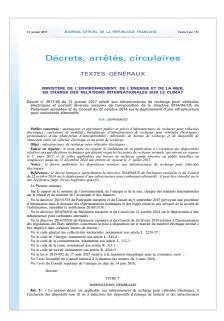
- La station de charge et le serveur d'exploitation dialoguent dans les deux sens, via un protocole standard : Open Charge Point Protocol (OCPP). Ce protocole est ouvert et accessible à tout industriel. Cet élément donne au propriétaire de la station de charge le choix de son opérateur de charge.
- Il faut éviter de choisir des bornes de charge ne fonctionnant pas sous OCPP ou imposant le raccordement obligatoire à un serveur intermédiaire.

Paiement

• Intégrer un terminal de paiement par carte à la station de charge peut être coûteux. En général, c'est inutile : il suffit de gérer le paiement par le téléphone, que se soit à la transaction, en compte prépayé, en facture mensuelle ou en abonnement.


Certification et labellisation

- Préférer du matériel labellisé ZE Ready (label Renault) dont les véhicules électriques représentent 50% du parc en France.
- Il faut également exiger le marquage CE du matériel.
- Attention à l'évolution des labels : EV Ready / Qualifelec.


Quelle architecture de charge choisir?

Une infrastructure de charge de véhicules électriques est composée d'une ou plusieurs bornes de charge.

Selon les besoins de chaque installation, Schneider Electric propose soit des bornes indépendantes, soit des bornes intégrées dans une architecture appelée "grappe de bornes".

Normes et réglementations

Journal officiel - Décret n° 2017-26 du 12 janvier 2017

relatif aux infrastructures de recharge pour véhicules électriques et portant diverses mesures de transposition de la directive 2014/94/UE du Parlement européen et du Conseil du 22 octobre 2014 sur le déploiement d'une infrastructure pour carburants alternatifs:

- dispositions générales.
- exigences requises pour la configuration des points de recharge :
- points de recharge normale,
- points de recharge rapide.
- dispositions relatives à la gestion de l'énergie :
- relations avec le gestionnaire du réseau de distribution,
- charge intelligente,
- itinérance de la recharge :
- dispositions relatives à l'exploitation des infrastructures de recharge,
- données relatives aux caractéristiques des infrastructures de recharge,
- les plates-formes d'interopérabilité,
- l'accès aux infrastructures et le paiement de la recharge,
- l'installation et la maintenance des infrastructures :
- dispositions relatives à la qualification des installateurs,
- dispositions relatives à l'installation des infrastructures,
- dispositions relatives à la maintenance des infrastructures,
- · dispositions diverses.

Les différentes normes autour du véhicule électrique

Prise

- CEI 60309-2
- CEI 62196-2
- CEI 62196-3 (Prise Combo)
- CEI 62196-4 (Prise LEV)
- CEI 62752 (Cordon Mode 2)
- CEI 61851-1 (édition 2)

Chargeur

- CEI 61851-21-1 CEM (AC/DC)
- CEI 61980 (ChargeInductive)
- CEI 61851-1 (edit 2)

Batterie

- CEI 62619 (lithium)
- CEI 62620 (lithium)
- CEI 62660 (lithium)
- ISO 12405 1,2
- ISO 12405-3 (Sécurité lithium-
- CEI 62576 (condensateur double Règlements ECE R12, R94, R95 couche)

Stockage Sécurité électrique

- ISO 6469-1,2 (Sécurité)
- ISO 6469-3,4 (base pour rév R100)
- Pendant Phase de Charge
- ISO 17409 (Sécurité en Charge)
- Règlement ECE R100

Interface batterie / véhicule

- ISO 8714 (mesure consommation)
- ISO 8715 (mesure performances)

Communication véhicule / infrastructure

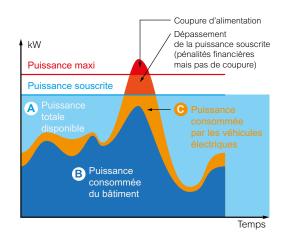
- ISO 15118 (Raccordement VE Infrastructure "Vehicle to Grid")
- CEI 61851 24 (Com Can DC)

CFM

- ISO 11451-2 (Sources externes)
- ISO 11451-3 (Emetteurs embarqués)
- ISO 11451-4 (BCI)
- CEI CISPRD 12, 22, 25
- ISO 7637-2 (Pulses)
- Directive 2009/19/CE/ECE R10,03

Maintenance:

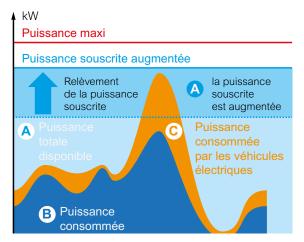
sécurité électrique du véhicule


- AFNOR C 18-550
- Habilitation Sécurité
- électrique VE
- Décret Français (travaux
- électriques sous tension)

9

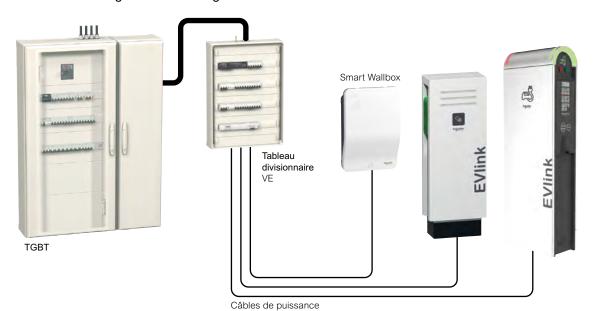
La gestion de l'énergie Comment optimiser l'impact de la consommation d'une solution de charge sur une installation électrique

La problématique


Situation initiale

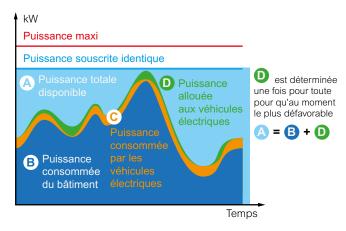
L'installation de bornes de charge dans une installation électrique existante peut avoir un impact important étant données les puissances mises en œuvre.

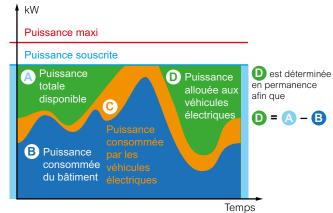
La réponse sans gestion de l'énergie


Augmentation de la puissance souscrite

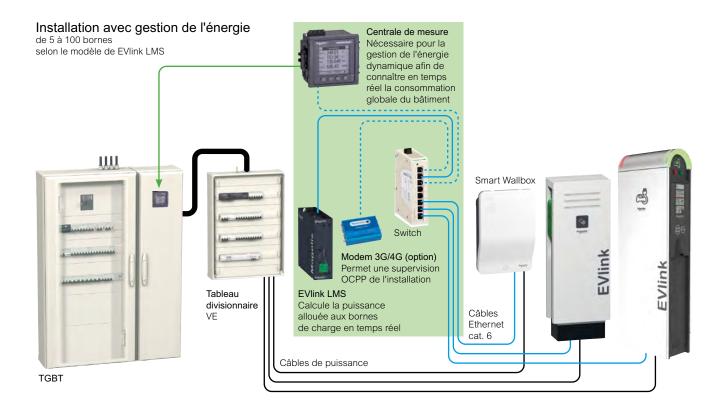
Cette solution consiste à augmenter la puissance souscrite auprès du fournisseur énergie pour pouvoir conserver le même modèle de consommation. Elle implique une augmentation du coût de l'abonnement et ne garantit pas que le seuil de déclenchement ne soit jamais dépassé.

Ainsi la continuité de service des utilités du bâtiment n'est pas assurée.


Installation sans gestion de l'énergie


Les solutions proposées par Schneider Electric

Gestion de l'énergie statique


Gestion de l'énergie dynamique

La consigne "D" est fixe. La puissance est répartie entre tous les véhicules raccordés.

La consigne "D" est ajustée en temps réel en fonction de la consommation des autres usages du bâtiment pour maximiser la puissance allouée à la charge des véhicules électriques.

		Mureva Styl	EVlink	EVlink	EVlink
			Wallbox	Wallbox Plus	Smart Wallbox
				0	0
implantation	lieux	en intérieur	en intérieur ou extérieur	en intérieur ou extérieur	en intérieur ou extérieur
,	exemples	box fermé (accès privatif individuel) garage d'une maison individuelle	• résidentiel individuel	1	petit tertiaire copropriété parking d'entreprise parking public
type de véh	nicules				
,		vélo, scooterquadricycle légervéhicule hybride rechargeable	quadricycle légervéhicule hybride rechaitvoiture 100 % électrique		
caractéristi	gues				
puissance de ch	•	• 2 kW (charge à limiter à 8 A)	• 3,7 ou 7 kW monophas 11 ou 22 kW triphasé	é	 paramétrable : -3,7 ou 7 kW monophasé -11 ou 22 kW triphasé + prise domestique 2 kW (selon modèle)
nombre de circu	uits de charge	1	1		1 ou 2 (selon modèle)
type de prises		socle de prise domestique	socle de prise T2		socle de prise T2 + socle de prise domestique (usage simultané impossible)
interface utilisati	ion	-	bouton-poussoir		
installation		murale (en saillie ou encastré)	murale ou sur pied (option)		
degré de protec	tion	• IP 55 • IK 07	• IP 54 • IK 10		
fonctionnal	ités				
communication		-	-		protocole OCPP
protection foudr	e (type 2)	à commander séparément	à commander séparément		à commander séparément
accès par badg	e RFID	-	-		selon modèle
boucle de détec	ction	-	-		-
gestion de l'éne	rgie	à commander séparément	à commander séparément	gestion dynamique de l'énergie	à commander séparément
		<u>catalogue Schneider Electric</u>	page 14	page 14	▶page 15

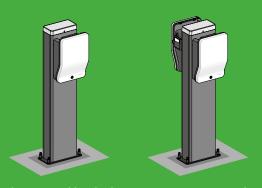
Panorama

Label EV Ready

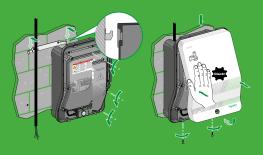
- EV Ready est un label européen visant à certifier que les différents matériels qui rentrent en compte dans la recharge d'une voiture électrique sont compatibles et sécurisés.
- EV Ready est une marque collective gérée par un organisme de certification indépendant, ASEFA, qui prend en compte trois aspects majeurs : sécurité, interopérabilité, performance.
- Ce label est donc un gage de qualité qui peut être exigé sur certain chantier.
- Schneider Electric propose des formations visant à concevoir, réaliser et mettre en œuvre des infrastructures de charge conformément aux exigences EV Ready ▶ page 30

Label ZE Ready

Z.E. READY CERTIFIED


- Z.E. Ready est une marque de conformité dont le but est d'assurer une entière compatibilité entre les infrastructures de charge et les véhicules Renault Z.E.
- Les deux aspects, produit et installation, doivent être conformes aux exigences Z.E. Ready pour bénéficier de l'usage de la marque. Ce droit d'usage nécessite donc un parfait contrôle sur le produit et son installation.

EVlink	EVlink	EVlink
Parking	City	Chargeur rapide
EV TENTINK		EVIINK EVIINK
en intérieur ou extérieur	en extérieur	en intérieur ou extérieur
 entreprise, hôtel, centre commercial copropriété de bureaux ou résidentielle administration 	voirie, flotte de grands comptes hôpital, supermarché, administration, université parking public	station service centre commercial parking public
 quadricycle léger véhicule hybride rechargeable voiture 100 % électrique 	vélo, scooter quadricycle léger véhicule hybride rechargeable voiture 100 % électrique	quadricycle léger véhicule hybride rechargeable voiture 100 % électrique
• paramétrable : - 3,7 ou 7 kW monophasé - 11 ou 22 kW triphasé	paramétrable: 3,7 ou 7 kW monophasé 11 ou 22 kW triphasé + prise domestique 2 kW	24 ou 50 kW en courant continu 22 kW en courant alternatif
1 ou 2 (selon modèle)	2	1, 2 ou 3 (utilisation d'une prise à la fois)
socle de prise T2	socle de prise T2 + socle de prise domestique (usage simultané impossible)	CA: socle de prise T2 CC: câble solidaire de la borne avec fiche Chademo ou Combo2 (usage simultané impossible)
bouton-poussoir	bouton-poussoir	bouton-poussoir ou écran LCD
murale ou au sol	au sol ou avec chaise murale	murale ou au sol
• borne : IP 54, IK 10 - prises : IP 54, IK 08 • prises branchées : IP 44	• IP 55 • IK 10	• IP 54 • IK 10
protocolo OCPP	protocolo OCPP	contactor vetro interlocutour Cohneider Flectric habitual
protocole OCPP à commander séparément	protocole OCPP intégrée dans la borne	contactez votre interlocuteur Schneider Electric habituel ou envoyez un mail à
selon modèle	intégré	fr-vehicule-electrique@se.com
-	option	
à commander séparément	option	
▶ page 18	▶ page 22	▶ page 24


Personnalisables

· Stickers, transfert ou sérigraphie

Installables sur pied

• Pied en accessoire

Installée en moins de 30 minutes

- Pas d'outils spéciaux
- Arrivée des câbles par le haut, le bas ou l'arrière

se.com/fr

Solutions de charge pour véhicules électriques

EVlink Wallbox, **EVlink Wallbox Plus**

EVlink Wallbox

séparément(1)

protections livrées avec la borne

3,7 kW maxi - 16 A - mono	EVH2S3P04K	EVH2S3P04KF	
7 kW maxi - 32 A - mono	EVH2S7P04K	EVH2S7P04KF	
11 kW maxi - 16 A - tri	EVH2S11P04K	-	
22 kW maxi - 32 A - tri	EVH2S22P04K	-	
caractéristiques électriques	raccordement: - alimentation: 2,5 à 16 mm² (câble rigide)		

caractéristiques mécaniques

- circuit de contrôle : 1,5 à 2,5 mm² • verrouillage à clé(2)

• degré de protection : IP 54 - IK 10 • boîtier résistant aux UV • masse : 5,6 kg

gestion de l'énergie limitation de puissance ou départ différé par envoi d'une phase 230 Vca

EVlink Wallbox Plus

Borne de charge à gestion dynamique de l'énergie

• raccordée au compteur d'énergie de l'installation électrique via l'entrée TIC (télé information client), la borne calcule en permanence la puissance disponible pour la charge

• ainsi la consommation globale de l'installation ne dépasse jamais la puissance souscrite auprès du fournisseur d'énergie, et le disjoncteur de branchement ne déclenche pas

protection à commander séparément(1)

protections livrées avec la borne

3,7 kW maxi - 16 A - mono	EVH3S3P04K	EVH3S3P04KF 0
7 kW maxi - 32 A - mono	EVH3S7P04K	EVH3S7P04KF 0
caractéristiques	• intègre un filtre 6 mA CC	
électriques	raccordement:	

caractéristiques mécaniques

- alimentation : 2,5 à 16 mm² - circuit de contrôle : 1,5 à 2,5 mm²

 verrouillage à clé⁽²⁾ • degré de protection : IP 54 - IK 10

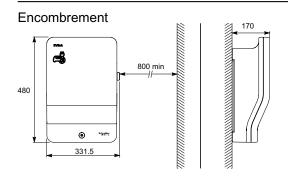
 boîtier résistant aux UV • masse : 6,3 kg

Protection à commander séparément ▶ page 17

(2) Description du verrouillage ▶ page 16

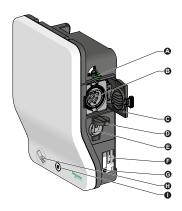
Guide EVlink -2021

EVlink Smart Wallbox


EVlink Smart Wallbox verrouillage par clé (2) contrôle d'accès RFID contrôle d'accès RFID contrôle d'accès RFID paramétrable + compteur MID mono 0 + interrupteur différentiel type B de 3,7 à 22 kW + compteur MID tri 0 EVB1A22P4KI EVB1A22P4RI EVKB14RBM2 0 EVKB14RBM3 0 T2 EVB1A22P4EKI EVB1A22P4ERI EVKB14ERBM2 0 EVKB14ERBM3 0 T2 + domestique usage simultané impossible spécificités • option de communication : modem 4G ou câble Ethernet • protocole OCPP · livrées avec 5 badge RFID livrés avec compteur à mesure directe MID avec afficheur LCD, • interrupteur différentiel iID - 30 mA mono - 63 A maxi (réf. A9MEM2155) type B EV (réf. A9Z51440) compteur à mesure directe MID avec afficheur LCD, mono ou triphasé 63 A maxi (réf. A9MEM3155) caractéristiques alimentation mono (3,7 kW - 16 A ou 7 kW - 32 A) ou triphasée (11 kW - 16 A ou 22 kW - 32 A) électriques • courant de charge nominal de 8 A à 32 A (réglage en usine à 32 A) • prise domestique limité à 10 A · raccordement : - 16 mm² avec câble rigide, 10 mm² avec câble souple circuit de controle : maxi 2,5 mm² • appareillages de protection à commander séparément bonne résistance aux UV degré de protection • IP 55 (borne avec prise T2), IP 54 (bornes avec prises T2 + domestique), IK 10 • 6,2 kg (borne avec prise T2), 6,6 kg (bornes avec prises T2 + domestique) masse gestion de l'énergie • limitation de puissance en fermant le contact 24 VCC + LMS (Load Management System) départ différé

Caractéristiques communes

- Couleur : Blanc RAL 9003 et gris RAL 7016
- Position des prises : à droite
- Bouton-poussoir avec témoin lumineux : borne prête pour la charge / charge terminée / charge en cours charge interrompue au moyen du bouton-poussoir / erreur détectée
- Support de câble intégré (le câble peut être enroulé autour de la borne)
- Marche immédiate dès raccordement des prises du câble
- Arrêt automatique batterie pleine ou manuel par action sur bouton "Arrêt / Redémarrage de la charge"
- Prise T2 munies d'obturateurs pour être conformes à la NF C15-100
- Transmission de données entre la borne de recharge et le véhicule selon le protocole CEI 61851
- Dimensions : 480 x 331,5 x 170 mm.


- Température de fonctionnement : -30 °C à +50 °C
- · Sortie charge : phase et tension identiques à celles du réseau amont
- Mode de charge :
- mode 3 selon IEC 61851 sur prise T2
- mode 1 et mode 2 sur prise domestique
- Conformité : RoHS, label EV Ready, déclaration CE de conformité avec tests réalisés par un laboratoire indépendant (LCIE)
- Régimes de neutre du réseau : TT, TN-S, TN-C-S, IT peut nécessiter l'ajout d'un transformateur d'isolement pour la charge de certains véhicules
- Fonctions "sécurité"
- mise à la terre du véhicule pendant la charge
- autodiagnostic de la borne avec coupure automatique en cas de défaut
- diagnostic du circuit de charge du véhicule avec coupure automatique en cas de x défaut
- limitation du courant de charge selon diamètre du câble de charge (avec véhicules disposant de cette fonction)
- Entrée pour le raccordemnt d'un contacteur "heures creuses"

EVlink Wallbox, EVlink Wallbox Plus, EVlink Smart Wallbox

Description

- A Système de verrouillage à clé (selon modèle)
- B Socle de prise T2
- Volet socle de prise T2
- Volet socle de prise domestique TE (selon modèle)
- **■** Socle de prise domestique TE (selon modèle)
- **6** Etiquette produit
- **G** QR code
- Lecteur RFID (selon modèle)
- Bouton Arrêt / Redémarrage et voyant d'état

États de la borne de charge

voyant vert

- borne prête pour la charge,
- ou charge terminée

voyant clignotant vert

· charge en cours

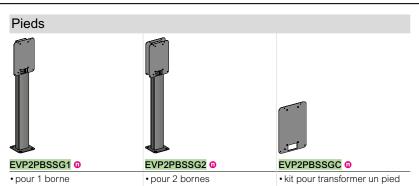
voyant bleu

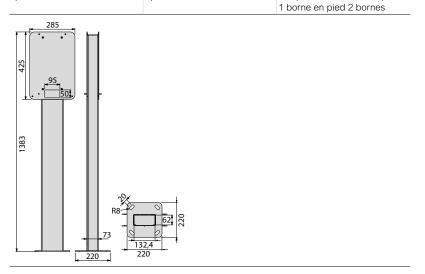
- charge interrompue au moyen
- · Arrêt/Redémarrage de la charge

voyant rouge

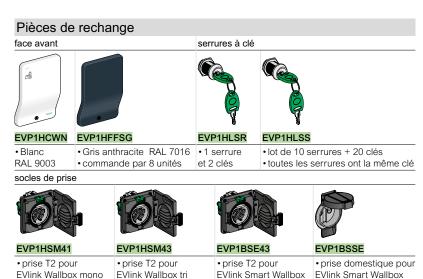
· erreur détectée

Verrouillage




Position déverrouillée

Position verrouillée


- il est impossible de :
- insérer une fiche dans la prise
- · débrancher la fiche
- · démarrer ou arrêter la charge en cours

- · livrée avec accessoires d'installation, câble d'antenne coaxial L = 2m et câble Ethernet L = 0,5 m
- accessoire pour Smart Wallbox uniquement

16 Life is On | Schneider Electric Guide EVlink -2021

EVlink Wallbox mono

Protection du circuit de puissance et de commande

• A commander séparément et à installer dans le coffret d'alimentation.

Appareillages de protection pour chaque prise

3 7 kW (1P+N)

disjoncteur iDT40N	A9P24620 (1)
20 A - courbe C - 10 kA	
bloc différentiel Vigi DT40	A9Y64625
25 A - 30 mA - type Asi	

7 kW (1P+N)

40 A - courbe C - 10 kA	
bloc différentiel Vigi iDT40	A9Y64640
40 A - 30 mA - type Asi	
déclencheur iMNx	A9A26969
à minimum de tension	

A9P24640 (1)

11 kW (3P+N)

disjoncteur iDT40N 20 A - courbe C	A9P24720 (1)
interrupteur différentiel iID 30 mA type B EV	A9Z51425 (1) (2)
déclencheur iMNx à minimum de tension	A9A26969

22 kW (3P+N)

disjoncteur iDT40N 40 A - courbe C	A9P24740 (1)
interrupteur différentiel iID 30 mA - type B EV	A9Z51440
déclencheur iMNx à minimum de tension	A9A26969

Autres fonctionnalités

• A commander séparément et à installer dans le coffret d'alimentation.

Protection foudre

- Selon la zone d'installation (cf NF C-15100), il peut être nécessaire d'installer un
- Seul un parafoudre de type 1 ou 2 installé dans les règles de l'art dans le tableau principal d'alimentation présente une protection efficace contre les surtensions
- Si un paratonnerre est situé à moins de 50 m de la borne, un parafoudre de type 1 est nécessaire.

Parafoudres

A9L16617	A9L16618	A9L16632
1P+N	3P+N	1P+N
type 2 iQuick PF10 - Icc 6 kA		type 1 PRF1 12,5 - Icc : 50 kA
-		

Comptage de l'énergie

- Les compteurs d'énergie permettent l'affichage de l'énergie active consommée.
- Les versions communicantes permettent également de transmettre cette information en OCPP à une supervision.

Compteurs d'énergie

non communicants pour EVlink Wallbox et Wallbox Plus

		4
A9MEM2000	A9MEM2110	A9MEM3115
• 1P+N	• 1P+N	• 1P+N - 3P -
 45 A maxi 	• 63 A maxi	• 63 A maxi

- 3P+N
- · MID (allocation des coûts)
- · mesure direct

communicants

A9MFM3155 • 1P+N • 1P+N - 3P - 3P+N • 63 A maxi • 63 A maxi

- · mesure directe
- communication Modbus
- · MID (allocation des coûts)
- peuvent être raccordés directement sur le bornier ModBus des bornes de charges ou sur une passerelle EGX avec un câble

Gestion horaire

- · L'interrupteur horaire permet d'autoriser la charge pendant les plages horaires souhaitées.
- Le contacteur heures creuses permet de limiter la charge à la période tarifaire des heures creuses.

Interrupteur 24 h Contacteurs heures creuses

16654

96 segments pré-équipé peignable XP de 15 minutes 2 NO - 20 A

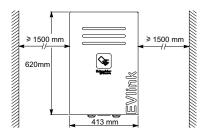
R9PCTH20 R9ECT620

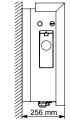
combiné embrochable XE (raccordé en usine avec un disjoncteur 20 A)

(1) Il est nécessaire d'adapter la référence du disjoncteur en fonction de l'Icc. Références matériel données pour Icc ≤ 10 kA. Au-delà d'un Icc de 10 kA, Schneider Electric recommande d'utiliser les tableaux de filiation du guide compléments techniques "Distribution électrique basse tension et HTA" afin de déterminer le disjoncteur amont à mettre en place.

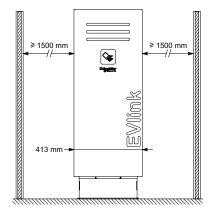
(2) Référence disponible au 1er trimestre 2021, avant cette date commander un interrupteur différentiel iID 30 mA type B Si réf. A9Z61425

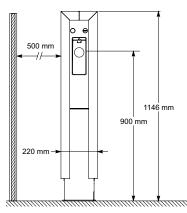
EVlink Parking

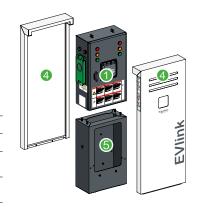

EVlink Parkir	g	murales		sur pied		
				G Supposer		
		to grader	EVlink		EVlink	
		T2	T2 + T2 usage simultané	T2	T2 + T2 usage simultané	T2 + domestique usage simultané possible
sans contrôle RFID	mono 3,7 kW - 16 A ou 7 kW - 32 A	EVW2S7P04	possible EVW2S7P44	EVF2S7P04	possible EVF2S7P44	EVF2S7P4E
Salis CUITIULE REID	mono 3,7 kW - 16 A ou 7 kW - 32 A tri 11 kW - 16 A ou 22 kW - 32 A	EVW2S7P04	EVW2S7P44 EVW2S22P44	EVF2S7P04 EVF2S22P04	EVF2S7P44 EVF2S22P44	EVF2S7P4E
avec contrôle RFID	mono 3,7 kW - 16 A ou 7 kW - 32 A	EVW2S7P04R	EVW2S7P44R	EVF2S7P04R	EVF2S7P44R	EVF2S7P4ER
(livré avec 5 badges)	mono 3,7 kW - 16 A ou 7 kW - 32 A tri 11 kW - 16 A ou 22 kW - 32 A	EVW2S22P04R	EVW2S22P44R	EVF2S22P04R	EVF2S22P44R	EVF2S22P4ER
caractéristiques	caractéristiques • appareillages de protection à commander séparément ⁽¹⁾					
		• 620 x 413 x 256 • protection à ins coffret d'alimenta	taller dans le		ed pouvant accu	eillir les protections ander séparément ⁽²⁾


Caractéristiques communes

- Les prises T2 sont munies d'obturateurs pour être conformes à la NF C15-100.
- IP 54 (IEC 61851) IK 10 (borne) IK 08 (prises).
- · Label EV Ready.
- CE validé par LCIE, RoHS.
- Température de fonctionnement : -25 à +50 °C.
- Mode charge: mode 3 (IEC 61851) sur les socles de prises type 2 (IEC 62196).
- Régime de neutre IT : peut nécessiter l'ajout d'un transformateur d'isolement pour la charge de certains véhicules.
- Entrée d'alimentation :
- circuit de contrôle : 1P+N 230 V,
- circuit de puissance (1 entrée par point de charge).
- Paramétrage de la puissance : le courant (réglé à 32 A en standard) peut être paramétré pour faire varier la puissance (valeur minimum conseillée de 8 A en monophasée et de 14 A en triphasée). Exemple : une borne 7 kW peut être limité à 3,7 kW en passant la valeur du courant de 32 à 16 A.
- Possibilité de paramétrer l'intensité maximale que la borne peut délivrer :
- sur la somme des 2 points de charge,
- par point de charge.
- Fonctionnalités disponibles : démarrage de la charge différé, délestage, gestion d'énergie.
- Interface d'utilisation pour chaque prise :
- 2 boutons-poussoirs: "Déverrouillage du volet" et "Arrêt",
 1 voyant sur chaque prise: clignotement vert pendant la charge,
- 3 voyant en face avant :
- défaut (rouge),
- maintenance / réservation (orange),
- prise disponible (vert).
- Communication entre borne et système de gestion d'énergie : protocole Modbus IP.
- Protection mécanique par volet verrouillable.
- Options disponibles : supervision, gestion de l'énergie.
- Protocole de communication : OCPP


(1) Protection à commander séparément ▶ page 21


Dimensions



Masses

0	borne	20 kg
2	support mural	5 kg
3	face avant pour borne murale	8 kg
4	face avant et arrière pour borne sur pied	17 kg
6	pied	13 kg

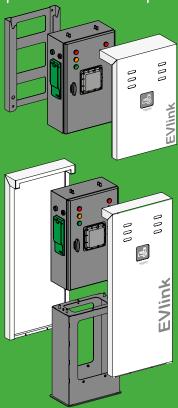
Paramétrage convivial

• Serveur web intégré dans la Smart Wallbox

Faciles à mettre en œuvre

• Câblage des protections en atelier

• Installation sur site par une seule personne



se.com/fr

EVlink Parking

Conçues pour être installées par 1 seule personne

Facile à faire évoluer

• avec le kit de rétrofit ref. EVP1PSS4 de la prises T3 vers la prise T2

• Découvrez le tutotriel de montage et téléchargez le guide de mise en œuvre

se.com/fr/retrofit-t3-t2

se.com/fr

Accessoires

cache câble

EVP1WPSC

- pour borne murale
 condamne l'accès des arrivées de câbles aux utilisateurs
- IK10

kit d'adaptation du pied

EVP1FKC

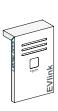
- permet l'installation des protections dans le pied de chaque borne
- composition :
- 2 platines latérales intégrant
 2 rails DIN chacune
- 2 rails DIN à monter au fond
 1 obturateur pour fermer le pied et assurer l'IP 54
- visserie et tresse de masse

support et maintien de câble

- pour borne murale ou sur
- permet d'enrouler un câble à chaque extrémité de la borne et de laisser le câble à demeure de façon sécurisée
- à fixer sur la coiffe de la borne

Pièces de rechange

pied EVP2FBS


support mural

EVP1WBS

coiffe

EVP2FCG

EVP2WCG

- faces avant et arrière pour borne sur pied
- face avant
 pour borne murale

socle de prise

EVP1PSS4 EVP1PSSE

• type T2 • type domestique

Modem 3G/4G

EVP3MM 0

• antenne à commander séparément

Antenne plate

EVP2MP

• à installer dans la borne

Alimentations 24 V

ABLM1A24012

- courant de sortie : 1,2 A
- puissance nominale :
- 30 W
- dimensions (H x L x P) : 91 x 36 x 55,6 mm
- permet d'alimenter
- les contacts OF de signalisation

Protection

· A commander séparément et à installer dans le coffret d'alimentation.

Protection du circuit de puissance et de commande

Appareillages pour chaque prise

domestique

disjoncteur iDT40N - 16 A - courbe C - 10 kA	A9P24616 (1)
bloc différentiel Vigi iDT40 25 A 30 mA type Asi	A9Y64625
déclencheur à minimum de tension MNx	A9A26969
contact OF de signalisation	A9A26924 (2)

3,7 kW (1P+N)

disjoncteur iDT40N - 20 A - courbe C - 10 kA	A9P24620 (1)
bloc différentiel Vigi iDT40 25 A 30 mA type Asi	A9Y64625
déclencheur à minimum de tension MNx	A9A26969
contact OF de signalisation	A9A26924 (2)

7 kW (1P+N)

disjoncteur iDT40N - 40 A - courbe C - 10 kA	A9P24640 (1)
bloc différentiel Vigi iDT40 40 A 30 mA type Asi	A9Y64640
déclencheur à minimum de tension MNx	A9A26969
contact OF de signalisation	A9A26924 (2)

11 kW (3P+N)

interrupteur différentiel iID 30 mA type B EV	A9Z51425 0
déclencheur OFsp en série avec le contact OF	A9A26924
disjoncteur iDT40N - 20 A - courbe C - 10 kA	A9P24720 (1)
déclencheur à minimum de tension MNx	A9A26969
contact OF de signalisation	A9A26924 (2)

22 kW (3P+N)

inter. différentiel 40 A - 30 mA - type B EV	A9Z51440
déclencheur OFsp en série avec le contact OF	A9A26924
disjoncteur iDT40N - 40 A - courbe C - 10 kA	A9P24740 (1)
déclencheur à minimum de tension MNx	A9A26969
contact OF de signalisation	A9A26924 (2)

Protection du circuit de contrôle

Appareillage pour chaque borne

Disjoncteur iDT40N 1P+N - 10 A - courbe C	A9P24610
Bloc Vigi iDT40 1P+N - type AC - 30 mA	A9Y62625

Autres fonctionnalités

• A commander séparément et à installer dans le coffret d'alimentation.

Protection foudre

- Selon la zone d'installation (cf NF C-15100), il peut être nécessaire d'installer un parafoudre.
- Seul un parafoudre de type 1 ou 2 installé dans les règles de l'art dans le tableau principal d'alimentation présente une protection efficace contre les surtensions destructrices.
- Possibilité d'installer un parafoudre par prise dans la borne (non fourni).
- Si un paratonnerre est situé à moins de 50 m de la borne, un parafoudre de type 1 est nécessaire.

Parafoudres

A9L16618 A9L1663 3P+N 1P+N

type 2 - iQuick PF10 - Icc 6 kA type 1 - PRF1 12,5 - Icc : 50 kA

Comptage de l'énergie

- Les compteurs d'énergie permettent l'affichage de l'énergie active consommée.
- Les versions communicantes permettent également de transmettre cette information en OCPP à une supervision.

Compteurs d'énergie

non communicants

• 1P+N • 1P+N

- A9MEM2000 A9MEM2110 A9MEM3115 • 1P+N - 3P - 3P+N • 45 A maxi • 63 A maxi •63 A maxi
- MID (allocation des coûts)
- mesure direct

- 1P+N • 1P+N - 3P - 3P+N • 63 A maxi • 63 A maxi
- mesure directe
- communication Modbus
- · MID (allocation des coûts)
- peuvent être raccordés directement sur le bornier ModBus des bornes de charges ou sur une passerelle EGX avec un câble RJ45

(1) Il est nécessaire d'adapter la référence du disioncteur en fonction de l'Icc. Références matériel données pour Icc ≤ 10 kA. Au-delà d'un Icc de 10 kA. Schneider Electric recommande d'útiliser les tableaux de filiation du guide compléments techniques "Distribution électrique basse tension et HTA" afin de déterminer le disjoncteur amont à mettre en place. (2) Le contact iOF permet d'informer la borne sur l'état du disjoncteur qui protège une prise. En paramétrant la borne, il est possible de faire passer le voyant de la borne du vert au rouge quand le disjoncteur de la prise a déclenché.

EVlink City

Personnalisables

• pour une intégration harmonieuse

se.com/fr

Bornes sur pied

2 prises T2 + 2 domestiques

7 kW

Gris clair RAL 7004

Gris anthracite RAL 7043

Blanc RAL 9003

modem sans

EVC1S7P4E4ERF EVC1S7P4E4ERFM nous consulter

nous consulter

nous consulter

nous consulter

monophasée avec 22 kW EVC1S22P4E4ERF sans triphasée avec EVC1S22P4E4ERFM

caractéristiques

- possibilité de paramétrer l'intensité maximale que la borne peut délivrer :
- sur la somme des 2 points de charge
- par point de charge
- protection intégréelecteur RFID

Accessoires

coffret d'arrivée du fournisseur d'énergie

chaise murale

EVC1CHMUR EVC1SCLESC EVC1CIBE

références sur demande : contactez votre interlocuteur Schneider Electric habituel ou envoyez un mail à fr-vehicule-electrique@se.com

- liaisons classe 2 fournies
- intègre :
- dans sa partie basse, le coffret de court-circuit individuel (CCPI)
- dans sa partie haute, le panneau de contrôle
- l'ensemble est agrée eRDF et conforme à la norme NF C 14-100
- permet l'installation des bornes sans perçage du sol
- · livré avec un arceau de sécurité
- facilite les travaux de génie civile

Modem 3G/4G

Antenne fouet

EVP2MX

antenne à commander séparément

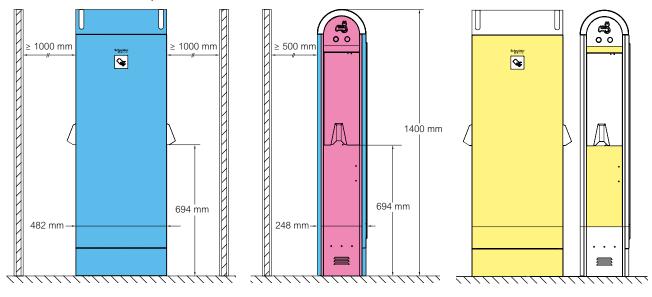
• à installer dans la borne

Guide EVlink -2021

Caractéristiques communes

- Possibilité de paramétrer l'intensité maximale que la borne peut délivrer sur la somme des 2 points de charge ou par point de charge.
- · Contrôle d'accès RFID :
- livré avec 2 badges conformes aux standards ISO15693, ISO14443 et Calypso,
- lecteur de badge RFID compatible avec la technologie MiFare,
- compatible avec les systèmes de pré paiement
- Interface utilisateur de chaque côté de la borne :
- 2 boutons-poussoirs pour lancer et stopper la charge,
- voyant visible à distance, indiquant l'état de la borne : vert (disponible), bleu (en charge), rouge (en défaut).
- Communication et pilotage avec un système de supervision : protocole OCPP.
- Fermeture automatique de la trappe (pas de possibilité pour l'utilisateur de l'oublier ouverte)
- type de prise et mode de charge :
- 1 prise domestique pour une recharge en mode 2,
- 1 prise type 2 pour une recharge en mode 3.
- Degré de protection : IP 55 avec portillon fermé, IP 44 avec portillon ouvert, IK10
- Résistante aux agressions mécanique, chimique et par flamme (briquet).
- Accès aux parties électriques protégé par une serrure à une clé.
- Matériau : aluminium 100% recyclable et valorisable en fin de vie
- · Conformité:
- label ZE Ready / EV Ready,
- déclaration CE de conformité avec tests réalisés par un laboratoire indépendant (LCIE),
- normes PMR (Personne à Mobilité Réduite)
- Température de fonctionnement : de -35 à +55 °C
- Masse : 36 kg pour la version monophasée, 40 kg pour la version triphasée
- Dimensions : 1400 x 248 x 482 mm

Options disponibles


- Compteur d'énergie MID.
- Personnalisation (covering, couleur, logotypage...).
- Traitement anti-graffiti.
- Gestion des boucles de détection de véhicule.

Protection

- Protections dédiées et intégrées à la borne pour chaque prise :
- prise domestique : disjoncteur 16 A type Asi,
- prise type 2 mono 7 kW : disjoncteur différentiel 40 A courbe C 30 mA type Asi
- prise type 2 tri 22 kW : disjoncteur 40 A courbe C
- + interrupteur différentiel 63A 30 mA type B conçu pour les applications succeptibles de produire des courants de défaut à composante continue.
- Protection foudre : parafoudre type 2.
- Protection à sécurité positive (bobine à manque de tension permettant un déclenchement sur défaut).

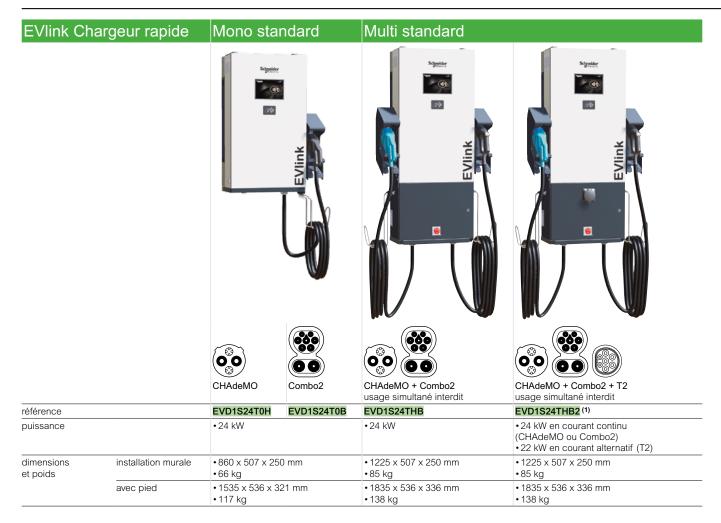
23

Dimensions et zones de personnalisation

Zone où la couleur RAL peut être personnalisée (coût et délais supplémentaires)

Zone où le RAL ne peut être modifié

Zone où des stickers peuvent être collés



Formation "Infrastructure de charge"

Concevoir, réaliser et mettre en service une infrastructure pour flotte de véhicules

page 40

EVlink Chargeur rapide

Caractéristiques communes

• Protections électriques intégrées : court-circuit, surcharge, courant résiduel sur la sortie courant continu.

• Puissance : 24 kW

• Longueur des câbles : 3,5 m

• Entrée d'alimentation : 380-480 VCA - 50/60 Hz - 3P+N+T

• Courant nominal d'entrée : 37 A

• Sortie en courant continu : 150...530 VCC - 1,5...65 A - 24 kW

• Sortie en courant alternatif: 32 A - 22 kW

• IP 54 - IK 10 • Rendement : 95%

• Facteur de puissance : 0,99

- Les prises T2 sont munies d'obturateurs pour être conformes à la NF C15-100.
- · Label EV Ready.
- Conformité aux normes :
- EMC : classe A,
- EN 61000-6-2 septembre 2015 (immunité pour les environnements industriels)
- EN 61000-6-4 2007 + A1 2011 (émission pour les environnement industriels)
- EN 61851 édition 2 (standard international VE)
- Température de fonctionnement : -25 à +50 °C.
- Mode charge :
- mode 4 avec les câbles équipés de fiche CHAdeMO ou Combo2
- mode 3 (IEC 61851) sur les socles de prises type 2 (IEC 62196).
- Régime de neutre IT : pour la recharge en courant alternatif, peut nécessiter l'ajout d'un transformateur d'isolement pour la charge de certains véhicules.
- Interface d'utilisation :
- Lecteur RFID
- écran tactile 7 pouces.
- Connexion au réseau : sans fil 3G
- Protocole de communication : OCPP 1.6, LAN/TCP-IP

(1) Commercialisation : janvier 2020

Pieds

pour borne	mono standard	multi standard
référence	EVP1DB1LG	EVP1DB2LG
	• 1535 x 536 x 321 mm • 50.8 Kg	• 1835 x536 x 336 mm • 57.2 Kg

Protection

disjoncteur iC60N - 4P - 50 A - courbe C - 10 kA A9F77450 (1) interrupteur différentiel 63 A - 30 mA - type B A9Z51463

(1) Il est nécessaire d'adapter la référence du disjoncteur en fonction de l'Icc. Références matériel données pour Icc ≤ 10 kA. Au-delà d'un Icc de 10 kA, Schneider Electric recommande d'utiliser les tableaux de filiation du guide compléments techniques "Distribution électrique basse tension et HTA" afin de déterminer le disjoncteur amont à mettre en place.

Guide EVIink -2021 Life is On | Schneider Electric

25

Accessoires communs

Label EV Ready

- EV Ready est un label européen visant à certifier que les différents matériels qui rentrent en compte dans la recharge d'une voiture électrique sont compatibles et sécurisés.
- Ce label est donc un gage de qualité qui peut être exigé sur certain chantier.

Qualification EV Ready

 Energy Training France propose des formations visant à concevoir, réaliser et mettre en œuvre des infrastructures de charge conformément aux exigences EV Ready

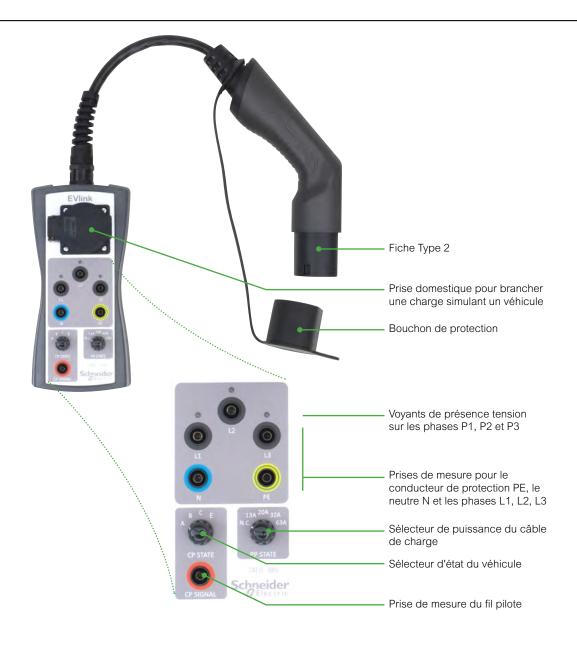
se.com/fr

Outil de test Simulation d'un véhicule

Fonction

- Outil pour électriciens qualifiés.
- Cet outil permet de vérifier le bon fonctionnement d'une charge en courant alternatif en simulant un véhicule.
- Elle est utilisable avec :
- EVlink Wallbox,
- EVlink Smart Wallbox,
- EVlink Parking,
- EVlink City,
- toutes bornes de recharge conformes à la norme CEI 61851-1.

Fonctionnement


- Une fois l'outil de test connecté à la station de charge, la charge démarre grâce à un bouton.
- Quelques minutes suffisent pour vérifier le bon fonctionnement de la station de charge.

Contrôles et mesures possibles

- L'outil permet de vérifier la présence de tension sur chaque phase.
- Pour les opérations suivantes, il est nécessitent d'utiliser en plus des instruments de mesure (multimètre, testeur de disjoncteur de fuite à la terre, oscilloscope) non fournis avec l'outil de test EVlink :
- mesure de la tension entre phases, entre phase et neutre, entre neutre et terre
- vérification de la liaison à la terre
- test de la capacité d'interruption du circuit de fuite à la terre de la station de charge
- mesure la tension entre le fil pilote et la terre
- observation des signaux transmis sur le fil pilote.

Caractéristiques

- Compatibilité avec les charges en courant alternatif monophasé ou triphasé
- Alimentation via le câble de charge (pas de batterie interne).
- Conforme aux normes CEI 61010-1 et CEI 61851-1
- Caractéristiques du réseau d'alimentation
- fréquence du réseau : 50 Hz
- système de mise à la terre : TT ou TN (ne pas utiliser en informatique),
- tension: 400 VCA sur connecteur type 2,
- puissance : test consommateur Max. 2,9 kVA (pas de fonctionnement continu).
- Caractéristiques mécaniques et environnementales
- degré de protection (selon CEI 60529) : IP 20,
- dimensions (H x L x P) : 105 x 750 x 62 mm (connecteur compris)
- poids : environ 795 grammes,
- connecteur : entrée de type 2 CEI 62196 type 2-II 400V3 \sim 50 Hz
- risque d'endommagement mécanique de l'outil de test en cas de chute à une température inférieure à 2 $^{\circ}\text{C}.$

Accessoires communs

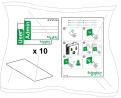
Véhicules		Puissance max	Références	Prise cô	té véhicule	
		du chargeur embarqué	câbles 5 m ⁽¹⁾ Schneider Electric	T1	Chademo	
	es véhicules sont livrés	ombarquo	pour une charge		ou Combo	
	e pour une charge lente ine prise domestique.		en mode 3	mode 3 (CA)	Mode 4 (CC)	
Audi	e-tron	11/22 kW tri	EVP1CNS32322	T2	Combo CCS	
rtuui	Sportback e-tron	11 kW tri /	EVP1CNS32322	T2	Combo CCS	
	ороновск е-поп	22 kW tri	LVI TONGSZSZZ	12	Combo CCC	
	A3 e-tron	3,3 kW mono	EVP1CNS32122	T2	non dispo	
	Q5 55 TSFI e quattro	7,4 kW mono	EVP1CNS32122	T2	non dispo	
	Q7 e-tron	7,2 kW mono	EVP1CNS32122	T2	non dispo	
	A7 Sportback 55 TFSI e quattro	7,4 kW mono	EVP1CNS32122	T2	non dispo	
	A6 TFSI e	7,3 kW mono	EVP1CNS32122	T2	non dispo	
BMW	i3	11 kW	EVP1CNS32322	T2	Combo CCS	
	IX3	11 kW tri	EVP1CNS32322	T2	Combo CCS	
	IX3	7,4 kW mono	EVP1CNS32122	T2	Combo CCS	
	13S	11 kW tri	EVP1CNS32322	T2	Combo CCS	
	X1 xDrive 25e	3,6 kW mono	EVP1CNS32122	T2	non dispo	
	330e	3,7 kW mono	EVP1CNS32122	T2	non dispo	
	225xe	3,7 kW mono	EVP1CNS32122	T2	non dispo	
	X2 xDrive 25e	3,6 kW mono	EVP1CNS32122	T2	non dispo	
	X5 xDrive 40e	3,7 kW mono	EVP1CNS32122	T2	non dispo	
	Serie 5 PHEV	3,7 kW mono	EVP1CNS32122	T2	non dispo	
	I8 Roadster	3,7 kW mono	EVP1CNS32122	T2	non dispo	
	X3 xDrive 30e	3,7 kW mono	EVP1CNS32122	T2	non dispo	
	740e iPerformance	3,7 kW mono	EVP1CNS32122	T2	non dispo	
DS	DS3 Crossback E-Tense	11 kW tri	EVP1CNS32322	T2	Combo CCS	
	DS7 Crossback E-Tense	7 kW mono	EVP1CNS32122	T2	non dispo	
Mini	Mini Cooper SE	11 kW tri	EVP1CNS32322	T2	Combo CCS	
	Mini Coutryman hybride rechargeable	3,7 kW mono	EVP1CNS32122	T2	non dispo	
Citroên	C-Zero	3,7 kW mono	EVP1CNS32121	T1	Chademo	
	Berlingo	2,3 kW mono	EVP1CNS32121	T1	Chademo	
	E-C4	11 kW tri	EVP1CNS32322	T2	Combo CCS	
	E-C4	7,4 kW mono	EVP1CNS32122	T2	Combo CCS	
	AMI	1,8 kW mono	Prise domestique			
	Berlingo Multispace	3,7 kW mono	EVP1CNS32121	T1	Chademo	
	E-Mehari	3,7 kW mono	EVP1CNS32121	T1	non dispo	
	E-SpaceTourner	11 kW tri	EVP1CNS32322	T2	Combo CCS	
	E-SpaceTourner	7,4 kW mono	EVP1CNS32122	T2	Combo CCS	
	C5 Aircreoss Hybride rechargeable	3,3 kW mono / 6,6 mono	EVP1CNS32122	T2	non dispo	
Hyundai	Kona Electric	(option) 11 kW tri	EVP1CNS32322	T2	Combo CCS	
.,	Kona Electric	7,2 kW mono	EVP1CNS32122	T2	Combo CCS	
	Ionia Electric	7,2 kW mono	EVP1CNS32122	T2	Combo CCS	
	loniq Hybride rechargeable	7 kW mono	EVP1CNS32122	T2	non dispo	
Kia	E-niro	7 kW mono	EVP1CNS32122	T2	Combo CCS	
-	E-niro	11 kW tri	EVP1CNS32322	T2	Combo CCS	
	E-soul EV	7,4 kW mono	EVP1CNS32122	T2	Combo CCS	
	Niro Hybride rechargeable	3,7 kW mono	EVP1CNS32122	T2	non dispo	
	Xceed PHEV	3,3 kW mono	EVP1CNS32122	T2	non dispo	
	Ceed Hybride rechargeable	3,3 kW mono	EVP1CNS32122	T2	non dispo	
	Optima Hybride rechargeable	3,3 kW mono	EVP1CNS32122	T2	non dispo	

La charge est opérationnelle quelle que soit la puissance du chargeur embarqué de la voiture et quelle que soit la puissance de la borne de recharge. Le temps de charge dépend de l'élément le moins puissant (chargeur de la voiture ou borne).

Kilomètres d'autonomie récupérés pour 1 h de charge⁽²⁾

Mode 3		J		Mode 4	
3,7 kW	7 kW	11 kW	22 kW	24 kW	50 kW
20 km	40 km	65 km	130 km	140 km	300 km

⁽¹⁾ Autre longueur (7 et 10 m) ▶ page 29
(2) Base de consommation : 17 kWh au 100 km.
Données valables tant que le niveau de charge de la batterie n'a pas atteint 80% de sa capacité.


Véhicules		Puissance max	Références	Prise cô	té véhicule
		du chargeur embarqué	câbles 5 m ⁽¹⁾ Schneider Electric	T1	Chademo
	véhicules sont livrés pour une charge lente	embarque	pour une charge	OU 12	ou Combo
	e prise domestique.		en mode 3	mode 3 (CA)	Mode 4 (CC)
Mercedes	eVito	7 kW mono	EVP1CNS32122	T2	non dispo
	EQC	7,4 kW mono	EVP1CNS32122	T2	Combo CC
	eSprinter	7,4 kW mono	EVP1CNS32122	T2	Combo CC
	eSprinter	20 kW tri	EVP1CNS32322	T2	Combo CC
	Classe A 250 e	3,7 kW mono	EVP1CNS32122	T2	non dispo
	GLC Plug-in hybride	3,7 kW mono	EVP1CNS32122	T2	non dispo
	Classe C 350 hybride rechargeable	3,7 kW mono	EVP1CNS32122	T2	non dispo
	Classe E hybride rechargeable	3,7 kW mono	EVP1CNS32122	T2	non dispo
	GLE Plug-in hybride	3,7 kW mono	EVP1CNS32122	T2	non dispo
	Classe S 560 e	7,4 kW mono	EVP1CNS32122	T2	non dispo
Mitsubichi	Outlander PHEV	3,7 kW mono	EVP1CNS32121	T1	Chademo
h 1"	I Miev	3,7 kW mono	EVP1CNS32121	T1	Chademo
Nissan	Leaf	6,6 kW mono	EVP1CNS32122	T2	Chademo
	E-NV200	7 kW mono	EVP1CNS32121	T1	Chademo
Dougost	E-NV200 Evalia E-208	6,6 kW mono 7 kW mono	EVP1CNS32121 EVP1CNS32122	T1	Chademo Combo CC
Peugeot	E-208	11 kW tri	EVP1CNS32122 EVP1CNS32322	T2	Combo CC
	3008 hybride	3,76 kW mono	EVP1CNS32322 EVP1CNS32122	T2	non dispo
	3000 Hybride	/ 7,4 kW mono	LVF ICNOSE 122	12	non dispo
	E-2008	7,4 kW mono	EVP1CNS32122	T2	Combo CC
	E-2008	11 kW tri	EVP1CNS32322	T2	Combo CC
	508 hybride	3,7 kW mono / 7,4 kW mono	EVP1CNS32122	T2	No dispo
	iOn	3,7 kW mono	EVP1CNS32121	T1	Chademo
	Partner Electric	3,2 kW mono	EVP1CNS32121	T1	Chademo
	Partner Tepee Electric	3,7 kW mono	EVP1CNS32121	T1	Chademo
Jaguar	I-Pace	11 kW mono	EVP1CNS32322	T2	Combo CC
	F-Pace P400e	7 kW mono	EVP1CNS32122	T2	Combo CC
Renault	ZOE	22 kW tri	EVP1CNS32322	T2	Combo CC
	Twizy	3,7 kW mono	Prise domestique		non dispo
	Captur e- tech Plug in	3,7 kW mono	EVP1CNS32122	T2	non dispo
	Kangoo ZE	7 kW mono	EVP1CNS32122	T2	non dispo
	Megane E Tech Plug-in Hybride	3,7 kW mono	EVP1CNS32122	T2	non dispo
Concort	Master ZE	7,4 kW mono	EVP1CNS32122	T2	non dispo
Smart	Fortwo Electric Drive	4,6 kW mono	EVP1CNS32122 EVP1CNS32322	T2	non dispo
	Fortwo Electric Drive Forfour Electric Drive	22 kW tri 22 kW tri	EVP1CNS32322	T2 T2	non dispo
	Forfour Electric Drive	4,6 kW mono	EVP1CNS32322	T2	non dispo
 Tesla	Model 3	11 kW tri	EVP1CNS32322	T2	Combo CC
Tosia	Model S	11 kW tri	EVP1CNS32322	T2	Tesla EU
	Model Y	11 kW tri	EVP1CNS32322	T2	Combo CCS
	Model X	16,5 kW tri	EVP1CNS32322	T2	Tesla EU
Toyota	Prius Plug-in Hybrid	3,7 kW mono	EVP1CNS32122	T2	non dispo
VolksWagen		7,2 kW mono	EVP1CNS32122	T2	Combo CC
	Golf 7 GTE	3,7 kW mono	EVP1CNS32122	T2	non dispo
	e-Golf	7,2 kW mono	EVP1CNS32122	T2	Combo CC
	e-UP	7 kW mono	EVP1CNS32122	T2	Combo CC
	ID. 4	11 kW tri	EVP1CNS32322	T2	Combo CC
	Passat GTE	3,7 kW mono	EVP1CNS32122	T2	non dispo
	e-Crafter	7,2 kW mono	EVP1CNS32122	T2	Combo CC
Volvo	XC90 T8 Twin Engine	3,7 kW mono	EVP1CNS32122	T2	non dispo
	XC40 T5 Twin Engine	3,7 kW mono	EVP1CNS32122	T2	non dispo
	XC40 Recharge	11 kW tri	EVP1CNS32322	T2	Combo CC
	V60 T8 Twin Engine	3,7 kW mono	EVP1CNS32122	T2	non dispo
	S60 T8 Twin Engine	3,7 kW mono	EVP1CNS32122	T2	non dispo
			EVP1CNS32122		

Câbles de charge

côte borne	véhicule	référence	long.	poids	puissance maxi		
monoph	asés						
		EVP1CNS32121	5 m	2,6 kg	7,4 kW		
	(63)	EVP1CNL32121	7 m	3,0 kg			
		EVP1CNX32121	10 m	4,1 kg			
type 2	type 1						
		EVP1CNS32122	5 m	2,8 kg			
		EVP1CNL32122	7 m	3,2 kg			
		EVP1CNX32122	10 m	4,5 kg			
type 2	type 2						
triphasé	triphasés						
		EVP1CNS32322	5 m	3,1 kg	22 kW		
		EVP1CNL32322	7 m	4,6 kg			
		EVP1CNX32322	10 m	5,9 kg			
type 2	type 2						

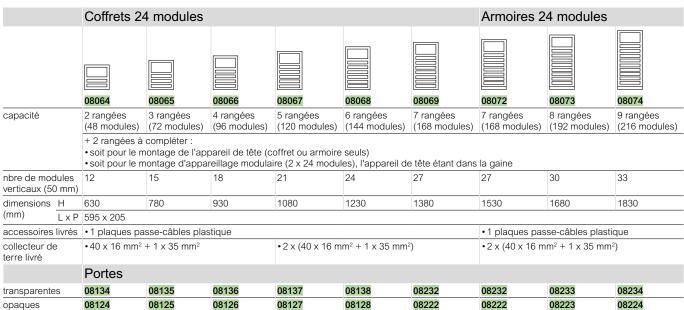
Badge RFID

EVP1BNS

- lot de 10
 livré avec étiquette de repérage : 1 "Admin" et 9 "User"
 à déclarer dans le système de contrôle d'accès des bornes

Accessoires communs

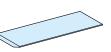
Coffrets et armoires métalliques Prisma Pack 250

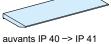


Caractéristiques communes

- Courant assigné du tableau : 250 A.
- Couleur : blanc crème RAL 9001.
- Conformes aux normes NF EN 61439-1&2.
- IP 30 sans porte.
- IP 40 avec porte.
- IP 41 avec porte + auvent.
- IP 43 avec porte +auvent + joint de porte.
- IK 08 avec porte, IK 07 sans porte.
- · Classe 1.
- Portes :
- ouverture à droite ou à gauche,
- à la masse par construction via les charnières,
- profondeur du coffret avec porte : 238 mm
- + 13,5 mm pour la poignée,
- livrées avec poignée standard équipé d'une serrure

Gaines pour armoires


- possibilité d'installer de la boutonnerie (hauteur sous porte = 58 mm).



		08174	08175	08176	08177	08178	08179	08272	08273	08274
dimensions	Н	630	780	930	1080	1230	1380	1530 mm	1680 mm	1830 mm
(mm)	LxP	305 x 205						305 x 205 mm		
		Portes								
transparent	es	-	-	-	08197	08198	08292	08292	08293	08294
opaques		08184	08185	08186	08187	08188	08282	08282	08283	08284

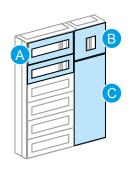
Accessoires d'étanchéité

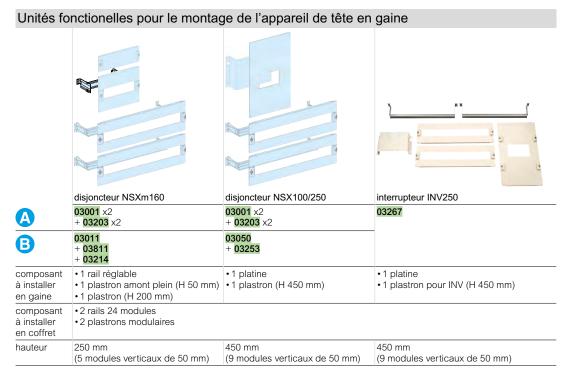
• L = 5300 mm

joint de porte IP 41 -> IP 43

08830	08832
•	• pour coffret ou armoire + gaine
- normat da nassar da ID 4	0 à ID 41 un coffret ou une

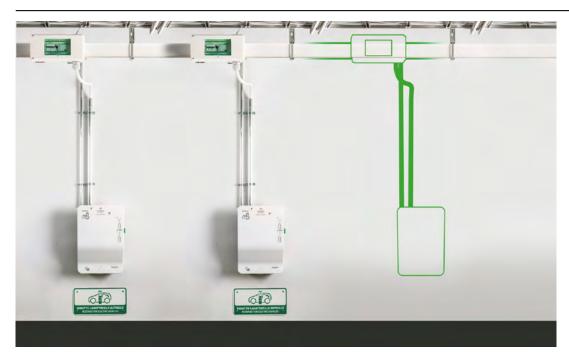
Gaines pour coffrets


• permet de passer de IP 31 à IP 43 un coffret ou une armoire équipé d'une porte et d'un auvent


30 Life is On | Schneider Electric Guide EVlink -2021

armoire équipé d'une porte

Unités fonctionelles pour le montage de l'appareil de tête en coffret ou armoire interrupteur ou disjoncteur NSXm 160 disjoncteur NSX100/250 interrupteur INS250 ou INV250 interrupteur INS40-160 disjoncteur C120, NG125 03260 03261 03030 03264 + 03232 + 03802 composition kit comprenant: kit comprenant: • 1 platine kit comprenant : • 1 rail réglable • 1 plastron découpé • 1 platine • 1 plastron modulaire • 1 plastron modulaire • 1 plastron plein • 1 plastron découpé (H 250 mm) (H 250 mm) (H 200 mm) • 1 plastron plein (H • 1 plastron plein (H • 2 plastrons pleins 50 mm) 50 mm) (H 50 mm) • 2 rehausses et un rail pour compléter la rangée avec de l'appareillage 300 mm (6 modules verticaux de 50 mm) hauteur



Plastrons pleins pour compléter la gaine

gaine	type	pour coffret						pour armoire		
	référence	08174	08175	08176	08177	08178	08179	08272	08273	08274
G	disjoncteur NSXm160	03816 + 03811	03817 + 03811	03817 + 03814	03816 x2 + 03814	03817 x2 + 03811	03817 x2 + 03814	03817 x2 + 03814	03816 x4 + 03811	03817 x3 + 03811
plastrons pleins à installer selon l'appareil installé	disjoncteur NSX100/250 ou interrupteur INV250	03813	03816	03817	03816 x2	03817 + 03816	03817 ×2	03817 ×2	03817 x2 + 03813	03817 x2 + 03816

Accessoires communs Canalisation préfabriquée Canalis

Une solution de distribution électrique décentralisée

- fiable,
- évolutive,
- pérenne.
- adaptée aux parkings couverts, aux garages d'entreprise...
- idéale pour répondre aux exigences du décret n° 2016-968 du 13 juillet 2016 concernant le pré-équipement des parkings sous-terrain dans les bâtiments neufs.

Canalis KN

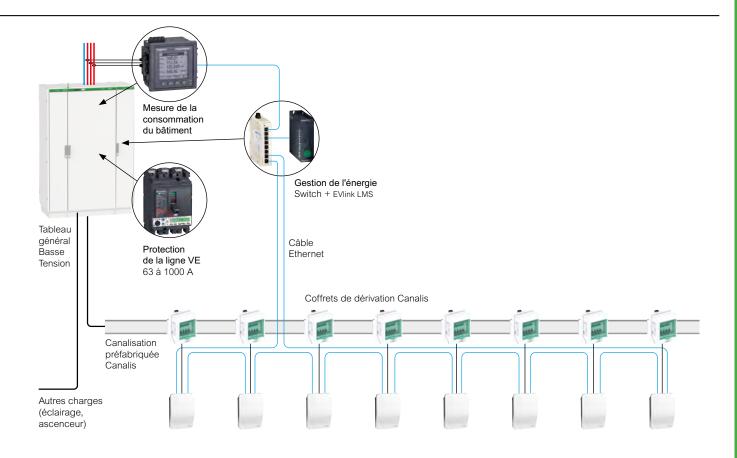
Distribution de 40 à 160 A Coffrets de dérivation de 16 à 63 A

Canalis KS

Distribution de 100 à 1000 A Coffrets de dérivation de 16 à 400 A

Son principe

Le système consiste à déporter dans des coffrets embrochables, la protection de la chaque borne avec éventuellement un compteur d'énergie.


Ses avantages

Une distribution électrique décentralisée avec les canalisations préfabriquées Canalis permet de :

- conserver le tableau BT existant,
- s'affranchir de tableau divisionnaire dédié au VE,
- bénéficier d'une installation deux fois plus rapide par rapport aux câbles.

Sa pertinence

Cette solution est pertinente dès qu'il y a au moins 5 bornes alignées à alimenter dans un parking.

- Exemple de configuration
 Parking avec 44 points de charge
 décomposé en 2 lignes :
 60 m en Canalis KSA 100 A pour 24 bornes 7 kW (foisonnement de 40 %)
 • 50 m en Canalis KSA 250 A pour 20 bornes 22 kW
- (foisonnement de 40 %)

Coffrets de dérivation Canalis pour chaque borne triphasée		
désignation	quantité	référence
coffret 63 A 8 modules	1	KSB63SM48
disjoncteur iDT40N 3P+N - type C - 40 A - 6000 A / 10 kA	1	A9P24740
déclencheur iMNx 220-240 Vca	1	A9A26969
interrupteur différentiel 4P - 40A - 30 mA - type B EV - 400 V	1	A9Z51440

Coffrets de dérivation Canalis pour chaque borne monophasée						
désignation	quantité	référence				
coffret 63 A 8 modules	1	KSB63SM48				
disjoncteur iDT40N 1P+N - type C - 40 A - 6000 A / 10 kA	1	A9P24640				
déclencheur iMNx 220-240 Vca	1	A9A26969				
bloc différentiel iDT40 1P+N 40A 30mA type A SI	1	A9Y64640				

Pour concevoir votre solution Canalis
Contactez votre interlocuteur Schneider Electric habituel
ou envoyez un mail à fr-vehicule-electrique@se.com

Canalisation Canalis							
désignation			quantité	référence			
embout d'alime	100 A	1	KSA100AB4				
	250 A	1	KSA250AB4				
éléments	2 m	250 A	1	KSA250ED4208			
droits	3 m	250 A	1	KSA250ED4306			
	5 m	100 A	12	KSA100ED45010			
		250 A	9	KSA250ED45010			
étrier universel			25	KSB400ZF1			

Des avantages pour chacun

Pour l'installateur

- Permet de respecter en toute circonstance le coefficient de foisonnement établi lors de la conception de l'infrastructure.
- Optimisation du coût global de l'infrastructure de recharge. Le dimensionnement de l'installation électrique (puissance souscrite, câble, calibre des disjoncteurs, armoires électriques) peut être réduit grâce à la mise en œuvre d'un EVlink LMS.
- Répondre aux exigences de gestion d'énergie locale nécessaire à l'obtention de certaines primes du programme ADVENIR.
- Évolution aisée de l'installation en changeant de licence logicielle pour s'adapter à l'évolution des besoins de charge.
- Mise en service grâce aux fonctions auto-detect, webserveur, firmware update...
- · Installation dans le tableau électrique.
- Disponible dans notre réseau de distribution.
- Offre la garantie d'un grand fabricant international et leader mondial

dans le domaine des bornes de recharge.

- Permet de réaliser des installations aux plus hauts standards EV/ZE Ready.
- Support pour la conception et la mise en service par une équipe d'experts Schneider Electric dédiée.

Pour l'exploitant du bâtiment

- Continuité de service du bâtiment garantie.
- Adaptation par rapport à l'infrastructure existante : possibilité de gérer différents parkings sur le même site (flotte d'entreprise, employés, visiteurs...).
- Pas de coût d'abonnement. Si les services d'un provider pour la facturation de la recharge sont souhaités, il est possible de choisir un CPO en fonction des besoins du site protocole OCPP1.6J).
- Interface via un webserver (pas de logiciel dédié).
- Choix de la puissance allouée aux bornes en fonction de la plage tarifaire.
- Programmation de plages horaires de limitation.

Pour le facility manager

- Gestion de la puissance et supervision locale des bornes intégrées dans un seul et même produit.
- Gestion autonome des badges et des autorisations (ajout, suppression, statut...).
- Facilités d'interconnexion : communication avec le Building Management System (BMS) via un webservice.

Pour les usagers des véhicules

- Répartition équitable de l'énergie entre tous les véhicules électriques tout en maximisant la puissance délivrée aux bornes de recharge et le nombre de véhicules rechargeables simultanément.
- Nouveau véhicule toujours prioritaire même lorsque toute la puissance disponible est déjà allouée aux autres véhicules. Ainsi le conducteur d'un véhicule électrique est rassuré car il peut constater que la recharge de sa voiture est active avant de la quitter
- Possibilité de gérer différents statuts pour les usagers (standard, VIP, durée de charge autorisée⁽¹⁾, kWh consommés⁽¹⁾...).

(1) Fonctionnalité à venir

Load Management System

EVlink LMS

	autonomes ou esclaves							
gestion de la	statique à partir d'une consigne fixe	-	HMIBSCEA53D1ESS	-	HMIBSCEA53D1ESM	-		
charge	statique ou dynamique à partir d'une consigne fixe ou issue d'une centrale de mesure	HMIBSCEA53D1EDB 0	-	HMIBSCEA53D1EDS	HMIBSCEA53D1EDM	HMIBSCEA53D1EDL 0		
capacité ⁽¹⁾ nombre maximum	bornes chaque borne pouvant avoir 1 ou 2 points de charge évolution de licence afin de s'adapter à l'évolution de l'infrastructure de charge, il est possible, en souscrivant une nouvelle licence, d'augmenter la capacité du LMS jusqu'à 100 bornes ou de le transformer en LMS maître :	5 15 50 10 Évolution de la licence d'un EVlink LMS statique • EVLMSESS2ESM : de 15 à 50 bornes Évolution de la licence d'un EVlink LMS dynamique • EVLMSEDB2EDS : de 5 à 15 bornes • EVLMSEDB2EDM : de 5 à 50 bornes • EVLMSEDB2EDL : de 5 à 100 bornes • EVLMSEDS2EDM : de 15 à 50 bornes • EVLMSEDS2EDL : de 15 à 100 bornes • EVLMSEDS2EDL : de 15 à 100 bornes • EVLMSEDS2EDL : de 50 à 100 bornes • EVLMSEDS2EDL : de 50 à 100 bornes				100		
	zones	2	1	2	10	20		
	niveaux de zones	2	1	2	3	3		
autres fonction	gestion du temps d'utilisation rapports de consommation d'énergie sur les autres départs				•	•		
	gestion de badges VIP							
	gestion de bornes VIP							
capacité ⁽¹⁾ nombre maximum	bornes chaque borne pouvant avoir 1 ou 2 points de charge zones	maître jusqu'à 1000 100 bornes pour l'EVlink LMS maître à associer avec 1 à 9 EVlink LMS esclaves qui peuvent piloter de 5 à 900 bornes						
	niveaux de zones	200						
gestion de la charge	statique ou dynamique à partir d'une consigne fixe ou issue d'une centrale de mesure	HMIBSCEA53D1EML 0						
autres	gestion du temps d'utilisation							
fonction	rapports de consommation d'énergie sur les autres départs	•						
	gestion de badges VIP							
	gestion de bornes VIP							

Aide à la mise en service

Assistance téléphonique Mise en service sur site forfait 2 h selon installation

sur demande : contactez votre interlocuteur Schneider Electric habituel ou envoyez un mail à fr-vehicule-electrique@se.com

(1) Aide au choix, voir schéma des différentes architectures ▶ page 52 à 54.
Possibilité d'obtenir une configuration du choix, faire une demande par mail ▶ fr-vehicule-electrique@se.com

Load Management System

Fonctions

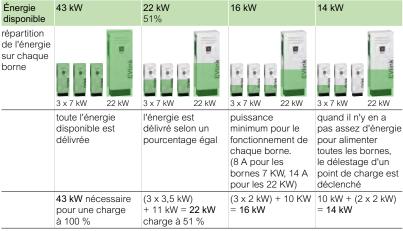
- calcule la puissance allouée aux bornes de charge
- assure la centralisation et la mise à disposition des données de chaque borne

Caractéristiques communes

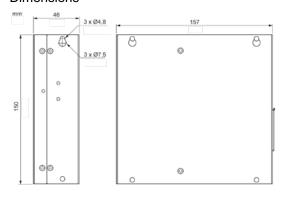
- type d'automate : Magelis iPC IIoT Edge Box Core
- système d'exploitation : Linux Yocto
 tension d'alimentation: 12...24 Vcc
- courant d'appel : 0,43 A • consommation : 16 W
- dimensions : $150 \times 46 \times 157 \text{ mm}$
- degré de protection: IP 40
- conformité aux directives :
- 2004/108 / CE (compatibilité électromagnétique),
- 2006/95 / CE (directive basse tension),
- classe A EN 55022 (compatibilité électromagnétique d'émissions conduites et rayonnées)
- raccordements :
- 2 x USB 2.0
- 1 x HDMI
- 2 x Ethernet (10/100/1000 Mb/s)
- 1 x COM RS-232 (défaut)
- RS-232/422/485 (non isolé)
- 1 raccordement à la terre
- 1 x GPIO
- 1 connecteur d'alimentation 24 Vcc
- entrées TOR pour la gestion des consignes des differents tarifs du fournisseur d'énergie 0
- connexion au bornes de charge
- directement au réseau local Ethernet via un switch
- · connexion au réseau externe :
- directement au réseau local Ethernet
- ou à distance par l'intermédiaire d'un modem 3/4G
- communication sous OCPP 1.6 JSON (évolution possible vers OCPP 2.0)

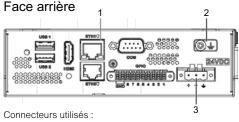
Interface utilisateur

- Le LMS permet l'accès à une interface utilisateur (web server) ergonomique et intuitive permettant de :
- démarrer / arrêter une charge,
- visualiser un tableau de bord indiquant en temps réel l'état de chacune des bornes,
- gérer les badges (ajout local, import, export) et les droits des utilisateurs,
- accéder à l'historisation des données de recharges par borne, par badge ou concaténées pour l'infrastructure,
- consulter les données de maintenance.


État des bornes

Charge en cours et terminées


Fonctionnement


- Le gestionnaire EVlink LMS est installé en tête de l'infrastructure de recharge. Il permet de limiter la puissance instantanée consommée par l'ensemble des véhicules et gérer l'énergie attribuée à chaque véhicule.
- En temps réel, il transmet une consigne (maxi 32A) à chaque borne de charge qui la relaie aux véhicules.
- En cas de dépassement de la consigne, une baisse de l'énergie est appliquée de la même façon à tous les points de charge (51% sur l'exemple).

- Quand le délestage d'un point de charge est déclenché, un algorithme répartit l'énergie disponible selon 2 stratégies (à choisir lors de la configuration) :
- proportionnalité de la puissance consommée : le système interrompt la charge des véhicules ayant obtenus le plus de kWh depuis le début de leur charge au profit des nouveaux véhicules. L'algorithme fait en sorte que toutes les voitures aient consommé la même quantité d'énergie.
- proportionnalité du temps de recharge : le système interrompt la charge des véhicules dont la durée de la charge est la plus importante au profit des nouveau véhicules. Une scrutation cyclique toutes les 15 minutes permet de reprendre la charge sur les premières bornes délestées si d'autres bornes ont atteint la même durée.

Dimensions

- 1 ETH1 (10/100/1000 Mbits/s)
- 2 Broche de mise à la terre
- 3 Connecteur d'alimentation CC

Switchs

		-	
	TCSESU083FN0	TCSESU053FN0	TCSESL043F23F0
architecture	en étoile	en étoile	en boucle de 15 points de charge (manageable)
type	8 ports	5 ports	4 ports dont 2 sont manageables
dimensions (H x L x P)	138 x 35 x 121 mm	114 x 25 x 114 mm	131 x 47 x 111 mm
consommation	4,1 W	2,2 W	6,5 W
installation	clineable sur rail DIN		


Brassage

S-One · Cat. 6 STP

VDIP184646010

- Cordon 1 m • RJ45 F/UTP
- câblage droit 4 paires

Parafoudre iQuick PRD40r

rail DIN

parafoudre	A9L16294			
cartouches 1P	A9L16310			
de rechange neutre	A9L16313			
fonctions	parafoudre types 2 à cartouches débrochables avec disjoncteur intégré : • protection de tête pour un niveau de risque moyen • report de signalisation de fin de vie			
nombre de pôles	3P + N			
largeur	13 pas de 9 mm			
régime de neutre	TNC			

Alimentations 24 V

	ABLM1A24025	ABLS1A24031	
courant de sortie	2,5 A	3,13 A	
puissance nominale	60 W	75 W	
dimensions (H x L x P)	91 x 53 x 55,6 mm	123,6 x 27 x 102	
nécessaire pour l'alimentation de	• gestionnaire de cha • switch : manageab • switch en boucle (0 • modem (0,5 A)	le (0,3 A)	

Modem 3G/4G

EVP3MM 0

• antenne à commander séparément

Antennes

Accessoire de fixation du EVlink LMS

sur rail sur platine perforée HMIYADBMODIN11 adaptateur rail DIN lot de 20 écrous clipsables M4

(vis non fourni)

Prise de courant

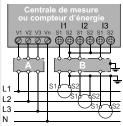
• disjoncteur différentiel 4,5 kA type AC - 30 mA - courbe C •2 modules de 18 mm

• prise 2P+T - 16 A •2,5 modules de 18 mm

permet l'alimentation d'un ordinateur lors des phase de mises en service et de maintenance

Load Management System

Mesure avec TI externes


Centrale de mesure PowerLogic

METSEPM5320

communication	1 nort Ethernet
Communication	1 port Ethernet
précision	classe 0,5 S
dimensions	96 x 96 x 72 mm (H x L x P)
à compléter	• des TI fermés
avec	• un organe de coupure ⁽¹⁾
(non fournis)	• un bloc court-circuiteur(1)

Principe de câblage

A : organe de coupure

(à adapter de sorte à correspondre au courant de court-circuit au niveau du point de connexion)

B: bloc court-circuiteur

Compteurs d'énergie iEM

	A9MEM3255	A9MEM3555	
allocation des coûts	MID classe C	-	
communication	Modbus	Modbus	
classe de précision	• 0,5 S avec TI 5 A, • 1 avec TI 1 A	•0,5 S	
largeur	5 modules de 18 mm	5 modules de 18 mm	
à compléter	• des TI fermés	• des TI de Rogowski	
avec (non fournis)	• un organe de coupure ⁽¹⁾ • un bloc court-circuiteur ⁽¹⁾ • une passerelle Link150		

Passerelle Ethernet Link150

EGX150

• 2 ports Ethernet type 10/100 Base TX • protocole : HTTP, Modbus TCP/IP, FTP, SNMP
 2 ports série (RS232 ou RS485, 2 ou 4 fils) protocole Modbus série nb max. d'appareils : 32 directement (ou 247 indirectement)
24 V CC ou PoE (15 W classe 3)
130 mA / 24 V CC - 65 mA / PoE 48 V CC
8 pas de 9 mm
fonctionnement : -25°C à +70°C

Transformateur de courant TI fermés

type	compatibilité et dimensions (L x H x P)	calibre (lp/5)	puissance selon classe de précision (VA)			référence
			0,5	1	3	
10 10 10	• pour câbles ø 21 mm	40 A	-	-	1	METSECT5CC004
Marie Sa	 capot plombable intégré 44 x 65 x 30 mm 	50 A	-	1,25	1,5	METSECT5CC005
0.00	• 44 X 65 X 50 IIIIII	60 A	-	1,25	2	METSECT5CC006
		75 A	-	1,5	2,5	METSECT5CC008
-		100 A	2	2,5	3,5	METSECT5CC010
		125 A	2,5	3,5	4	METSECT5CC013
		150 A	3	4	5	METSECT5CC015
		200 A	4	5,5	6	METSECT5CC020
		250 A	5	6	7	METSECT5CC025
ch.	• pour câble ø 26 mm	250 A	3	4	-	METSECT5MB025
	ou barres 12 x 40 / 15 x 32 mm	300 A	4	6	-	METSECT5MB030
	• 60 x 85 x 43 mm (option : 60 x 87 x 60)	400 A	6	8	-	METSECT5MB040
القصالة	• pour câble ø 27 mm ou barres 10 x 32 / 15 x 25 mm • 56 x 80 x 43 mm (option: 56 x 82 x 60)	150 A	3	4	-	METSECT5MA015
4		200 A	4	7	-	METSECT5MA020
PIETE		250 A	6	8	-	METSECT5MA025
		300 A	8	10	-	METSECT5MA030
		400 A	10	12	-	METSECT5MA040
	• pour câble ø 32 mm	250 A	3	5	-	METSECT5MC025
	ou barres 10 x 40 / 20 x 32 /	300 A	5	8	-	METSECT5MC030
	25 x 25 mm • 70 x 95 x 45 mm	400 A	8	10	-	METSECT5MC040
	(option : 70 x 97 x 60)	500 A	10	12	-	METSECT5MC050
		600 A	12	15	-	METSECT5MC060
		800 A	10	12	-	METSECT5MC080
	• pour câble ø 40 mm	500 A	4	6	-	METSECT5MD050
	ou barres 12 x 50 / 20 x 40 mm • 70 x 95 x 45 mm (option: 70 x 97 x 60)	600 A	6	8	-	METSECT5MD060
		800 A	8	12	-	METSECT5MD080

Transformateurs de courant TI de Rogowski souples ouvrants

capot plombable

• précision : ±1% de 50 à 5000 A • longueur du câble entre le compteur et le T1 : 2,4 m • transformateurs de courant ouvrants compatibles uniquement avec les compteurs d'énergie

réf. A9MEM3555

 Ø 80 mm
 L 250 mm
 METSECTR25500

 Ø 96 mm
 L 300 mm
 METSECTR30500

 Ø 146 mm
 L 460 mm
 METSECTR46500

 Ø 191 mm
 L 600 mm
 METSECTR60500

 Ø 287 mm
 L 900 mm
 METSECTR90500

+ d'infos

METSECT5COVER

Transformateur de courant TI pour jeu de barres voir catalogue général > se.com/fr/catalogues

Mesure avec capteurs d'énergie sans fil

Capteurs d'énergie sans fil bloc Vigi iC60 Compact NSX pour A9MEM1560 A9MEM1542 LV434021 A9MEM1572 LV434023 3P+N nb de pôles 1P+N 3P+N 3P+N ≤ 250 A ≤ 630 A calibre ≤ 63 A ≤ 63 A

- installation en aval
 a compléter avec une interface Ethernet radio-fréquence

Interface Ethernet radio-fréquence

Acti 9 PowerTag Link C

A9XELC10

- liaison radio-fréquence pour 20 PowerTag maxi.1 port Ethernet TCP/IP
- serveur web embarqué (visualisation des données : charges, courant, tension, énergies) et/ou intégration dans une GTB
- alimentation 110/230 V CA
- montage sur rail DIN (largeur : 6 pas de 9 mm)

Formations en présentiel	Bornes de charge
	Certification IRVE P1 et EV Ready / ZE Ready 1.4 niveau Q1
Durée	1 jour (7 h)
Code CPF	290147
Répartition	cours 70% études de cas et travaux pratiques 30%
Niveau	Spécialiste Maîtrise Base
Domaine	Conception Mise en œuvre Exploitation Maintenance
Objectif	• Répondre au volet formation de la certification IRVE niveau base (P1) du décret N°2017-26 et Certification EV-Ready 1.4 - Q1.
Compétences visées	 Concevoir, réaliser et mettre en œuvre une infrastructure de charge simple (sans configuration spécifique pour la communication ou la supervision). Être en capacité d'être certifier IRVE P1 et d'obtenir la certification EV Ready 1.4 - ZE Ready A.4 niveau Q1.
Connaissances préalables	Maîtriser la conception et le calcul des installations électriques (SLT, Icc, calcul de cables).
Contenu de la formation	Les besoins des utilisateurs: • le marché actuel et perspectives, • les caractéristiques des véhicules électriques et besoins énergétiques associés, • principe du VE, chaine électrique et batteries, • les bornes de charge et prises. Conception d'une infrastructure de charge simple: • le cadre normatif et les certifications, • les exigences de sécurité, • modes et prises de charge, • charge monophasée ou triphasée, • capacité et temps de charge. Mise en œuvre d'une infrastructure de charge simple: • étude des schémas de raccordement, • raccordement d'installations type,
Decuments foursis	mise en service, qualification de l'installation. Supporte de gours pagagoibles our plateforme digitale.
Documents fournis	 Supports de cours accessibles sur plateforme digitale. Attestation de stage pour être en capacité: d'être certifié IRVE P1 et d'obtenir la certification EV Ready 1.4 - ZE Ready A.4 niveau Q1.

Stages de formation

Energy Training France

Retrouvez l'ensemble des formations proposées par Schneider Electric, les dates, prix et lieux des stages, les formulaires d'inscription sur > se.com/fr/formation

Infrastructures de charge	
Certification IRVE P2 et EV Ready / ZE Ready 1.4 niveau Q2	Système de gestion de la charge Complément optionnel du stage IRVEP2
2 jours (14 h)	1 jour (7 h)
290147	
cours 70% travaux pratiques 30%	cours 60% travaux pratiques 40%
Spécialiste Maîtrise Base	Spécialiste Maîtrise Base
Conception Mise en œuvre Exploitation Maintenance	Conception Mise en œuvre Exploitation Maintenance
 Répondre au volet formation de la certification IRVE niveau expert (P2) du décret N°2017-26 et certification EV-Ready 1.4 – Q2. 	Mettre en service et paramétrer un systèmes de gestion de la charge (Load Management System) pour les bornes de charge de véhicule électrique.
 Concevoir, réaliser et mettre en œuvre une infrastructure de charge jusqu'à 22 kW avec configuration pour bornes de charges communicantes et supervision de station. Être en capacité d'être certifier IRVE P2 et d'obtenir la certification EV Ready 1.4 - ZE Ready 1.4 niveau Q2. 	• Être capable de proposer la solution la plus adaptée pour charger plusieurs véhicules électriques en limitant l'impact des charges sur le réseau électrique du client.
 Maîtriser la conception et le calcul des installations électriques (SLT, Icc, calcu de câbles). Avoir validé le stage IRVEQ1 (ou équivalent) Avoir de bonnes connaissances en réseau de communication et environnement informatique. 	Venir en stage avec son PC portable. Avoir le droit d'administrateur sur son PC. Avoir suivi le stage IRVEP2
Introduction: • rappels réglementation et labels, • contraintes à prendre en compte, • méthodologie d'audit électrique de site. Conception d'une infrastructure d'une ou de plusieurs bornes communicantes: • paramétrage du gestionnaire de borne, • maîtrise de la structure de câblage communicante, • communication entre IRVE et VE, • mise en réseau des bornes,	Ce stage est un complément optionnel au stage IRVEP2. Il n'est pas obligatoire dans le cadre de la certification EV Ready 1.4. Le gestionnaire EVlink LMS: Il gère, en temps réel, la puissance instantanée allouée à chaque borne de charge grâce à un algorithme qui répartit l'énergie disponible en tenant compt soit de la puissance consommée, soit du temps de charge de chaque véhicule. Selon le modèle de LMS, cette quantité d'énergie est soit fixe (version statique soit calculée en tenant compte de la consommation du reste de l'installation (dynamique).
• référentiel EV/ZE Ready 1.4 Q2 – Q3.	Fonctionnalités du LMS • remontée d'information,
Mise en œuvre d'une infrastructure de charge communicante :	gestion des accès, suivi des consommations. Choix du LMS Procédure de mise en œuvre sur site : paramétrage, mise en réseau des bornes, mise en service.
 Supports de cours accessibles sur plateforme digitale. Attestation de stage pour être en capacité: d'être certifier IRVE P2 et d'obtenir la certification EV Ready 1.4 -ZE Ready A.4 niveau Q2. 	Supports de cours.Guide de paramétrage.

Quels accompagnements

pour mes projets?

Schneider Electric peut vous accompagner depuis la définition du besoin, jusqu'à la réalisation de votre projet, en prenant en compte l'étude technique de distribution électrique et la définition des équipements à mettre en œuvre.

Comment installer

et mettre

en service?

Dès la mise en œuvre de votre installation électrique. vous pouvez agir sur sa performance et sur les coûts associés en vous assurant que les équipements sont installés, paramétrés, et mis en service dans les règles de l'art et les délais convenus

Nos experts vous accompagnent sur vos sites pour la mise en œuvre de tous nos équipements : installation, tests et assistance à la mise en service du réseau de distribution électrique et des bornes de charge.

Exploitation

Comment exploiter et maintenir en état?

C'est souvent à l'occasion d'une panne provoquant une coupure d'alimentation que vous constatez la vulnérabilité de votre site. Il est alors trop tard pour éviter les pertes.

De plus, le recours à des opérations de maintenance curative engendre des coûts et des délais importants (identification du problème, intervention sur l'équipement, diminution de la performance de l'équipement, mise à disposition de pièces de rechange, mobilisation de compétences techniques...

Une politique de maintenance adaptée vous permet de garder votre installation sous contrôle et ainsi de vous prémunir contre de tels risques, tout en diminuant les coûts de possession.

Optimisation

Comment optimiser mes installations?

Quel est l'impact de l'énergie sur mon activité et comment l'optimisation de mes coûts me permet-elle de sécuriser mes équipements?

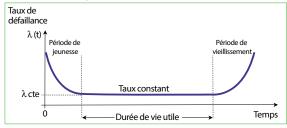
Dans un contexte de budgets contraints et d'investissements réduits, les gains réalisés sur l'énergie permettent souvent de financer l'entretien et la rénovation des équipements.

Modernisation

Comment moderniser mon installation?

La modernisation de votre installation tout au long de sa vie permet d'une part de suivre l'évolution des besoins des utilisateurs, et d'autre part de limiter au maximum les risques d'immobilisation

Vos questionnements


Point sur la maintenance

Pourquoi faire de la maintenance ?

- "La question n'est pas de savoir si l'équipement va subir un dysfonctionnement mais quand ?"
- Les équipements électriques sont également régis par cette loi.

Qu'est ce que la fiabilité ?

- Elle se définit comme étant l'aptitude d'un bien à accomplir une fonction requise, dans des conditions données, durant un intervalle de temps donné.
- · Pour la mesurer, on s'intéresse au taux de défaillance.

• La maintenance préventive n'a pas d'effet direct sur la valeur minimum du taux de défaillance mais permet d'augmenter la durée de vie utile de l'équipement.

Les 3 piliers de la maintenance

Des personnels hautement qualifiés

• Les équipes qui interviennent ont des connaissances approfondies sur les équipements, les technologies employées, l'intégration des équipements dans leur environnement global (compréhension des phénomènes électriques, des réseaux, ...) ainsi qu'une très forte sensibilité à la sécurité des personnes et du matériel.

Des procédures et méthodes maintenance adaptées

- Les opérations de maintenance d'un parc suivent une procédure détaillée (planification, plan de prévention, relevé de parc, consignation, exécution, rapport, recommandations...)
- Tous les équipements Schneider Electric disposent d'un dossier méthode maintenance "constructeur" détaillé. Il sert de base aux tâches réalisées : de la consignation, à la vérification des performances des équipements.
- Le retour d'expérience sur nos équipements dans leur environnement d'exploitation nous permet de compléter ces méthodes et procédures (notamment par des actions relevant du diagnostic ou de la maintenance conditionnelle).

Un accès aux pièces spécifiques constructeur

- · Capacité d'identification de la pièce
- Accès privilégié aux pièces garanties d'origine constructeur (commercialisées)
- Accès exclusif aux pièces nécessitant une mise en oeuvre constructeur (non commercialisées).

Nos préconisations de maintenance

- Les fréquences recommandée dans ce tableau tiennent compte de conditions normales de fonctionnement :
- faible criticité des équipements,
- conditions environnementales optimales.
- Toutefois, ces fréquences devront être augmentée :
- en fonction du niveau de criticité (faible, moyen, élevé ou critique),
- en présence de conditions environnementales sévères (atmosphères corrosives entre autres), dans le respect des recommandations du fabricant.

Typologie	Fréquence minimale	Qui intervient ?
maintenance constructeur	tous les 2 ans	• Le constructeur
maintenance niveaux I et II définis par l'AFNOR FDX 60-000 par du personnel habilité et formé	tous les ans	L'utilisateur final ule constructeur (particulièrement recommandé dans le cadre d'installations à haute criticité et/ou dans des conditions environnementales sévères)

Les réponses de Schneider Electric

Projet

Étude personnalisée

Audit

- L' étude personnalisée consiste en premier lieu en un audit de votre installation électrique afin de définir :
- la faisabilité technique de votre projet,
- l'impact de la réalisation du projet sur les installations existantes de votre site.
- Pour l'étude, un technicien se déplacera sur votre site pour effectuer des mesures électriques afin de savoir si votre installation est suffisamment dimensionnée pour recevoir des bornes de charge.

Préconisation

- L'audit donne lieu à un rapport dans lequel une solution appropriée est préconisée :
- nécessité ou non de modifier l'installation : mise en place d'un coffret de gestion d'énergie, renforcement de la terre, installation d'un transformateur d'isolement,
- meilleur emplacement pour le point de charge en fonction de l'accessibilité et du génie civil,
- puissance du point de charge en fonction des usages et des types de véhicules à recharger.

Étude financière

- L'étude permettra également de faire une analyse de l'équilibre financier.
- En fonction des attentes de rentabilité du projet, la mise en place d'une stratégie monétique pourra être proposée.
- Un conseil sur la politique tarifaire associée pourra être apporté.

Organisation typique d'un projet

Client

Chargé d'affaire

Équipe projet

Suivi administratif

- Gestion de contrat
- Achat
- Logistique

Suivi technique

- Planification
- Engeneering chantier
- Conception schéma et installation
- Expertise technique
- Développement logiciel

Installation

Assistance

à la maîtrise d'ouvrage

Elle consiste à définir techniquement les préconisations établies lors de l'étude personnalisée :

- technologie de recharge (mode de charge 2, 3 ou 4),
- typologie et fonctionnalité des bornes (borne résidentielle ou tertiaire, murale ou sur pied).
- puissance de chacune des bornes,
- distribution électrique à partir des armoires électriques existantes (comprenant éventuellement câbles, gestionnaire d'énergie, tranchée et génie civil).

Pilotage

A l'issue de la phase d'assistance à maîtrise d'ouvrage et une fois le projet validé, les experts Schneider Electric seront l'interface avec les maîtres d'œuvre afin de coordonner les différents corps de métier nécessaires à la réalisation des travaux :

- suivi du génie civil : réalisation de tranchées, de dalles en béton pour la fixation des bornes...
- suivi des travaux électriques : câblage de l'alimentation et des auxiliaires de la borne...

Mise en service

Lorsque les travaux ont été réalisés et que votre infrastructure de charge est en place, un technicien Schneider Electric ou un installateur certifié mandaté par nos soins interviendra afin de réaliser la mise en service de votre installation :

- paramétrage des points de charge,
- enregistrement des badges RFID,
- mise en place de la supervision si l'option est souscrite.
- essais de fonctionnement,
- mise en service,
- remise d'un procès verbal de mise en service pour valider la garantie du produit.

Exploitation

Formation sur site

à l'utilisation de la borne

- L'exploitant de la borne est formé au parcours client, c'est-à-dire au mode opératoire pour brancher, charger et débrancher le véhicule.
- Il est formé à la maintenance de premier niveau (AFNOR) ainsi qu'au diagnostic.
- Il peut également être formé au système de supervision si l'option a été souscrite.

Contrats de service

Extensions de garantie

- Schneider Electric propose d'étendre la garantie standard de vos produits de 1 ou 3 ans : la garantie totale sera alors de 3 (2 + 1) ou 5 (2 + 3) ans.
- Cette prestation, simple et attractive, s'applique à tout produit en cours de commercialisation.

Contrat de maintenance

Schneider Electric a développé des contrats de maintenance pour répondre à l'ensemble de vos besoins. Contactez votre interlocuteur Schneider Electric habituel ou

▶ fr-vehicule-electrique@se.com

Service après vente

Assistance en ligne

- Avant d'intervenir il est indispensable de réaliser le bon diagnostic. Des spécialistes sont à votre écoute 5 jours / 7. Ils vous dépannent en ligne dans 80 % des cas et définissent, si nécessaire, les ressources adaptées à la situation.
- L'assistance téléphonique "Experts" donne un accès prioritaire à des experts réactifs répondant à toutes questions techniques sur du matériel et des logiciels commercialisés ou hors commercialisation.

Interventions sur site

- Nos équipes sont à proximité : présence sur l'ensemble du territoire.
- Nos réseaux de compétences et les centaines d'interventions que réalisent chaque année nos experts permettent de capitaliser les expériences et donc de réduire le temps d'intervention.

Pièces de rechange (PDR)

L'envoi des pièces est possible 5 jours / 7 depuis l'ensemble des plateformes logistiques du territoire.

Optimisation

Mise à niveau technique

- Les experts de Schneider Electric et les partenaires (installateurs formés et certifiés VEFBR) ont les habilitations nécessaires afin de pouvoir faire évoluer votre infrastructure de charge dans le temps.
- Les mises à niveau techniques peuvent consister en l'ajout d'options sur votre borne si cette dernière est susceptible de les recevoir :
- modem pour les solutions de supervision.
- boucle de détection pour éviter les véhicules thermiques "ventouse" sur vos places de parking,
- changement du type de prises afin d'être en conformité avec la réglementation.

Mise à niveau logiciels

Ce service consiste à la mise à jour par un technicien du firmware de chacune des bornes de charge.

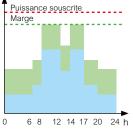
Gestion de l'énergie

La gestion de l'énergie d'une station de charge

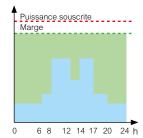
Lorsque l'alimentation de la station de charge est fournie par le bâtiment, la gestion globale de l'énergie (bâtiment + borne) permet de maîtriser :

- le coût énergétique par la souscription de la puissance optimale auprès du fournisseur d'énergie,
- le confort des occupants : un afflux de véhicules à charger ne fera pas disjoncter l'alimentation principale.

Le coffret de gestion d'énergie


- · Gestion de l'énergie amont :
- une consigne de puissance maximale est paramétrable sur le gestionnaire,
- la charge de chaque phase est équilibrée en particulier lors de la charge de véhicules monophasés sur un point de charge triphasé.
- Gestion de l'attribution de puissance pour chaque prise :
- pour chaque phase, le courant maximum est calculé à chaque nouveau branchement de véhicule, et la consigne courant est réajustée,
- pour les véhicules se chargeant en triphasé, la consigne courant est le minimum des trois consignes de phases.
- Le calcul du courant pour chaque prise est fait en temps réel par le gestionnaire (intégré dans le coffret de gestion d'énergie).
- La consigne de courant pour chacune des prises est transmise en temps réel au véhicule, qui a 5 secondes pour l'appliquer. Si cette consigne n'est pas appliquée par le véhicule, alors un ordre d'ouverture du contacteur de la prise concernée est donné.
- En cas d'impossibilité d'ajouter un nouveau véhicule par manque de puissance sur l'installation, les prises restantes sont indiquées comme indisponibles.

Le principe de gestion d'énergie


Il consiste à maintenir l'équilibre entre l'énergie pouvant être fournie par le bâtiment et celle demandée par la station de charge.

Consommation du site (hors véhicules électriques)

Puissance allouée à la station de charge

• La gestion d'énergie statique : partant de la puissance totale disponible et après soustraction de la consommation du site hors véhicules électriques, cette solution permet d'allouer la puissance restante à la station de charge (a). Cette puissance ainsi octroyée à la station de charge est constante et linéaire. En fonction des pics de consommation d'énergie du site et si la puissance souscrite n'est pas augmentée alors il peut y avoir un déclenchement des protections.

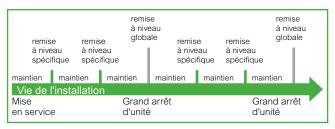
• La gestion d'énergie dynamique : le système de gestion du bâtiment et celui de la station de charge communiquent entre eux. Celui de la station peut assurer la limitation temporaire de la charge pour respecter les contraintes énergétiques imposées par le reste du site. Inversement la puissance allouée à la station de charge peut être plus importante aux moments où la consommation énergétique du reste du site est faible (nuit, matinée et soirée).

Modernisation

Maintien en Condition Opérationnelle

Pour assurer le bon fonctionnement de vos installations et anticiper au maximum les pannes et limiter les temps d'immobilisation, nous vous proposons un Contrat de Maintien en Condition Opérationnelle Mission du MCO

Garantir une certaine durée de vie de l'installation, au moyen de : remises à niveaux périodiques.


opérations de maintien des performances entre deux remises à niveau. Fournir les moyens à mettre en œuvre pour assurer le soutien efficace d'un système pendant sa phase d'exploitation.

Déroulement du MCO

Le processus MCO garantissant que les équipements (matériel et logiciel) restent opérationnels pendant la durée de vie requise se traduit par : stockage des Pièces de Rechange (PdR) : gestion du stock, pérennité des pièces stockées,

dimensionnement du stock,

mise en place de contrats de maintenance pour maintenir les outils (réparation, requalification) et les compétences.

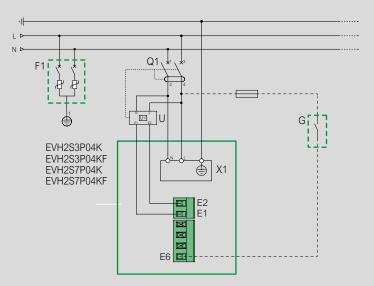
Substitution

Votre infrastructure de recharge doit évoluer en fonction de vos besoins et de ceux de vos clients.

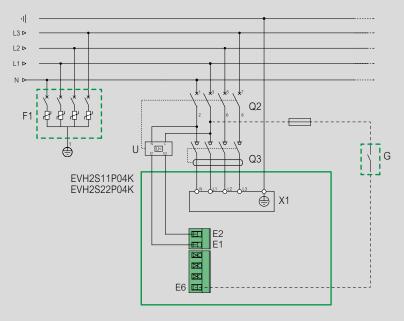
L'obsolescence de vos équipements est un frein au changement.

Elle augmente les risques d'indisponibilité de vos installations.

Pour gérer son évolution, notre prestation de substitution intègre toutes les actions nécessaires à une transformation sans risque de votre installation : fourniture et installation des nouveaux équipements


Ce service peut être associé à des prestations d'expertise, d'audit, de support technique, d'étude mais aussi de dépose et de recyclage des anciens équipements.

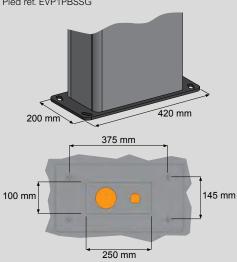
Retrofit


Schneider Electric vous accompagne dans toutes les opérations consistant à remplacer des composants anciens ou obsolètes de vos bornes de charge par des composants plus récents.

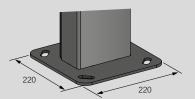
EVlink Wallbox

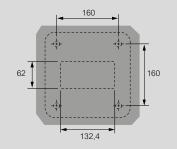
Raccordement monophasé

Raccordement triphasé

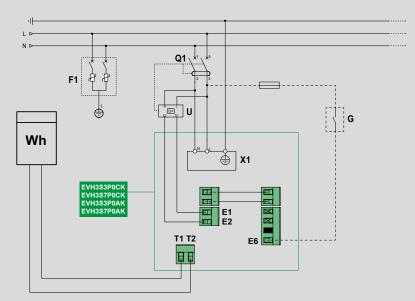


- Q1 : disjoncteur différentiel
- Q2 : disjoncteur
- Q3 : interrupteur différentiel de type B
- F1 : parafoudre
- U : déclencheur à minimum de tension MNx (optionnel, sauf pour la conformité au label EV Ready)
- E1, E2 : bloc de jonction pour déclencheur à minimum de tension
- E6 : entrée de limitation de puissance ou départ différé
- G : contact pour limitation de puissance ou départ différé
- X1 : bloc de jonction de puissance


Génie civil

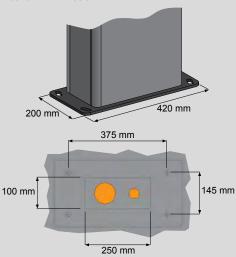

Le pied est prévu pour recevoir jusqu'à deux fourreaux de diamètre 63 mm maximum.

Pied réf. EVP1PBSSG

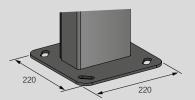

Pieds réf. EVP2PBSSG1 et EVP2PBSSG2

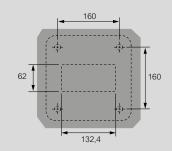
EVlink Wallbox Plus

Raccordement monophasé



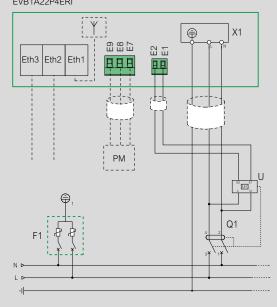
- Q1 : disjoncteur différentiel F1 : parafoudre
- U : déclencheur à minimum de tension MNx
- E1, E2 : bloc de jonction pour déclencheur à minimum de tension
- E6 : entrée de limitation de puissance ou départ différé
- G : contact pour limitation de puissance ou départ différé X1 : bloc de jonction de puissance
- T1,T2 : entrée signal TIC


Génie civil

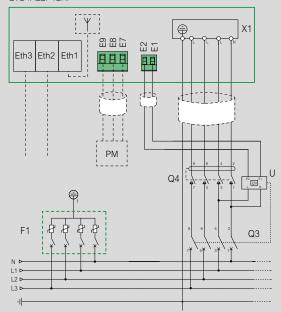

Le pied est prévu pour recevoir jusqu'à deux fourreaux de diamètre 63 mm maximum.

Pied réf. EVP1PBSSG

Pieds réf. EVP2PBSSG1 et EVP2PBSSG2



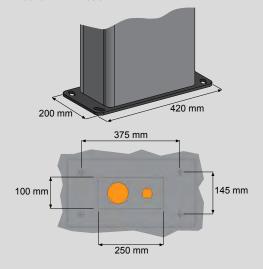
EVlink Smart Wallbox


Raccordement monophasé

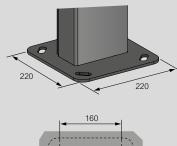
EVB1A22P4KI EVB1A22P4RI EVB1A22P4EKI EVB1A22P4ERI

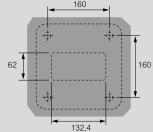
Raccordement triphasé

EVB1A22P4KI EVB1A22P4RI EVB1A22P4EKI EVB1A22P4ERI

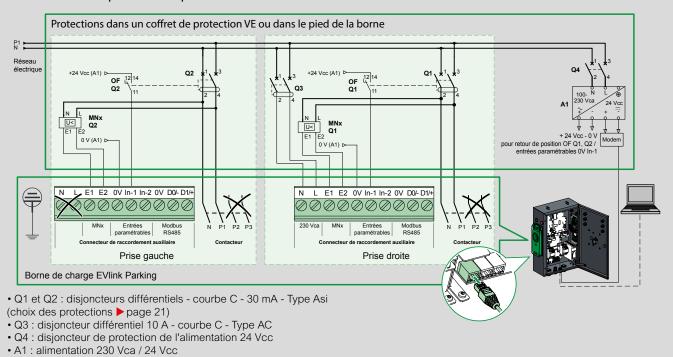


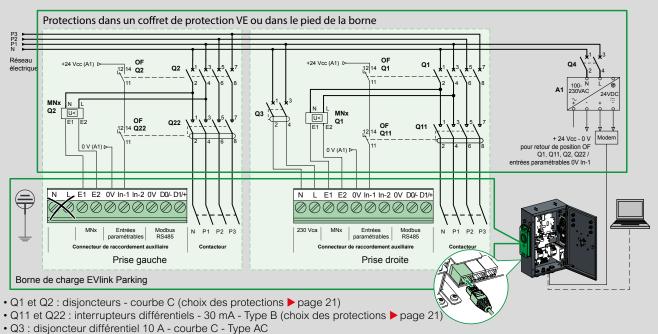
- Q1 : disjoncteur différentiel
- Q3 : disjoncteur
- Q4 : interrupteur différentiel de type B
- F1 : parafoudre
- U : déclencheur à minimum de tension MNx (optionnel, sauf pour la conformité au label EV Ready)
- PM : compteur d'énergie (ModBus)
- X1 : bloc de jonction de puissance
- Eth1 : port Ethernet 1
- Eth2 : port Ethernet 2
- Eth3: port Ethernet 3
- E1, E2 : bloc de jonction pour déclencheur à minimum de tension
- E7 ... E9 : Bloc de jonction pour l'interface Modbus E7 D1 / E8 D0 / E9 0 V


Génie civil


Le pied est prévu pour recevoir jusqu'à deux fourreaux de diamètre 63 mm maximum.

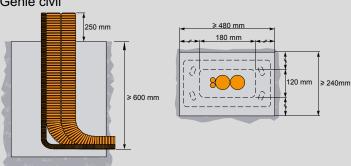
Pied réf. EVP1PBSSG


Pieds réf. EVP2PBSSG1 et EVP2PBSSG2



EVlink Parking

Raccordement 2 prises monophasées


Raccordement 2 prises triphasées

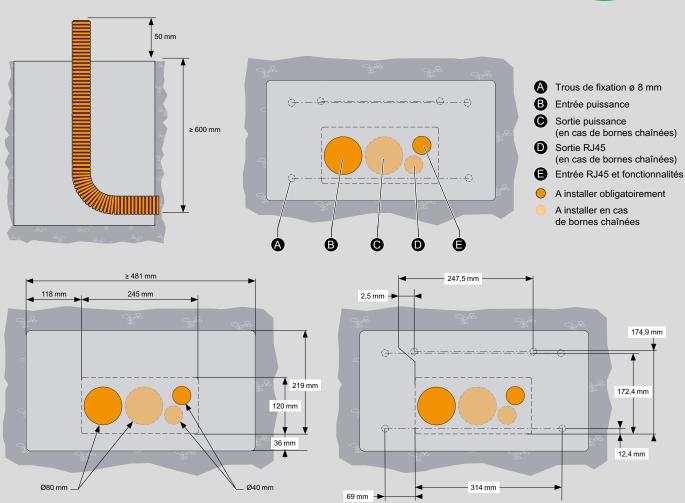
• Q4 : disjoncteur de protection de l'alimentation 24 Vcc

• A1 : alimentation 230 Vca / 24 Vcc

Génie civil

EVlink City

Raccordement de la puissance


Borne 2 x 7 kW:

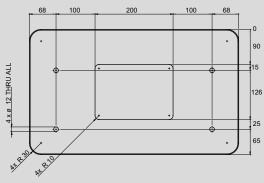
- Utiliser un câble de puissance type 3Gx, de section maximale 35 mm².
- Raccorder la phase et le neutre sur le bornier de raccordement X1 et la terre comme indiqué sur la photo ci-contre avec un couple de serrage entre 2 N.m et 2,5 N.m.

Borne 2 x 22 kW:

- Utiliser un câble de puissance type 5Gx, de section maximale 35 mm².
- Raccorder les phases et le neutre sur le bornier de raccordement X1 et la terre comme indiqué sur la photo ci-contre avec un couple de serrage entre 2 N.m et 2,5 N.m.
- La section des câbles dépend du type d'installation, de l'isolation utilisée ainsi que de la température.
- Se référer aux exigences de la norme NFC 15-100.

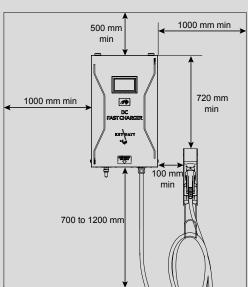
Génie civil

EVlink Chargeur rapide

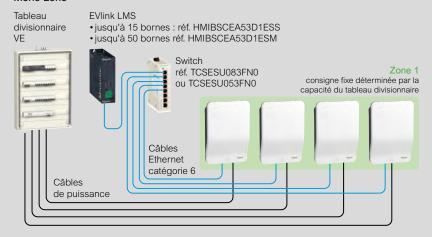

Raccordement de la puissance

- Prévoir 1 câble en triphasé + neutre + terre 5Gxx mm² vers la borne.
- La section sera fonction de la longueur et du mode de pose (raccordement maxi 16 mm², diamètre extérieur entre 18 et 25 mm²).

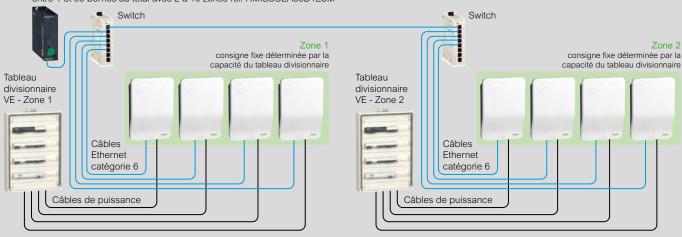
Génie civil


- Densité du béton : B30, 350kg de ciment / m3.
- Planéité : 2 mm/m.
- Fondation hors gel en extérieur.
- Tiges filetées M14 maxi en acier inoxydable.
- Scellement chimique des tiges filetées conseillé.
- Le piquet de terre doit être installé en terre suivant les normes de réglementations locales en vigueur.
 Des protections mécaniques antiches doivent être ajoutées autour de la borne.
- Des protections mécaniques antichoc doivent être ajoutées autour de la borne pour la protéger contre les chocs (ex : borne heurtée par un véhicule).
- Le génie civil doit prévoir la place pour 1 fourreau permettant de faire passer un câble 5Gxxxx rigide ainsi qu'un fourreau pour un câble Ethernet.

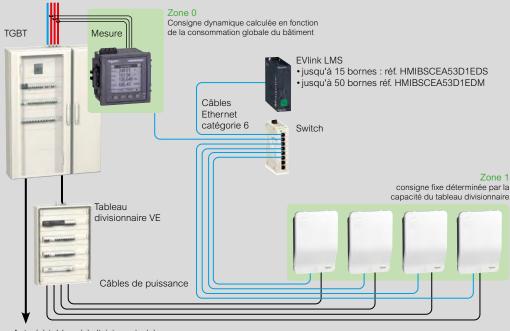
Fixation du pied



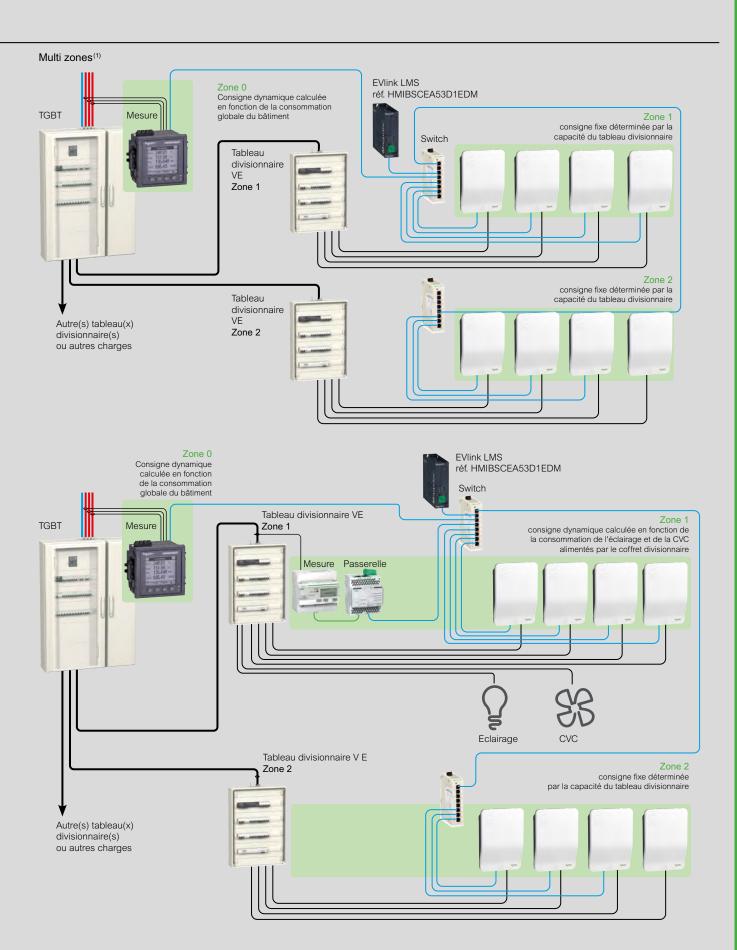
Fixation au mur



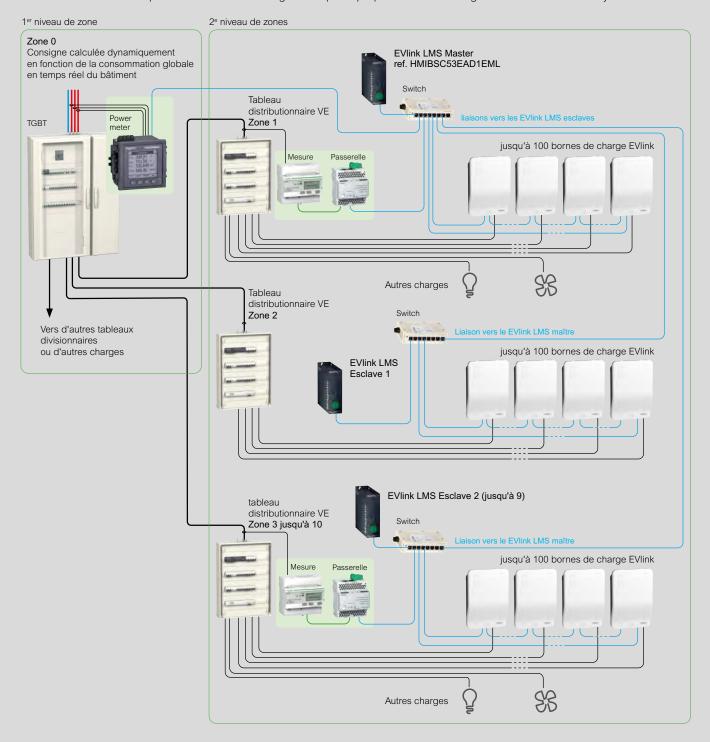
Gestion dynamique de la charge à partir d'une consigne fixe Mono-zone



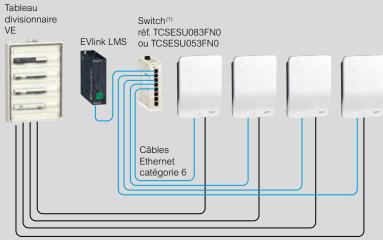
Multi-zones (multi tableaux)


EVlink LMS entre 1 à 15 bornes au total avec 2 zones réf HMIBSCEA53D1EDS entre 1 et 50 bornes au total avec 2 à 10 zones réf. HMIBSCEA53D1ESM

Gestion dynamique de la charge à partir d'une consigne dynamique Multi zones⁽¹⁾

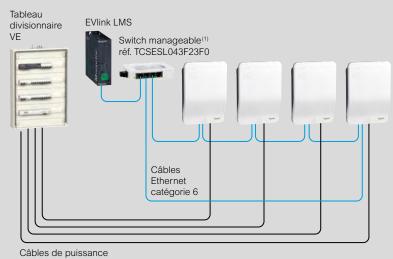


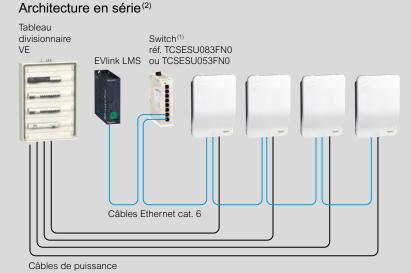
Autre(s) tableau(x) divisionnaire(s) ou autres charges



Gestion dynamique de la charge à partir d'une consigne dynamique ou statique Multi zones avec plus de 100 bornes de charge

- Un maître EVlink LMS peut gérer jusqu'à 9 esclaves EVlink LMS et jusqu'à 100 bornes de recharge par lui-même.
- Le nombre total de bornes de charge gérées peut donc aller jusqu'à 1000, réparties dans jusqu'à 200 zones électriques.
- La gestion de la charge est mise en œuvre pour toute l'étendue du système, et sa supervision et son contrôle sont regroupés dans un seul tableau de bord d'interface utilisateur pour l'ensemble du système.
- Un EVlink LMS Master peut gérer n'importe quel EVlink LMS en tant qu'esclave. Ceux-ci doivent être sélectionnés en fonction du nombre de stations à gérer par l'esclave
- L'EVlink LMS Master comprend un assistant de configuration spécifique pour faciliter la configuration de l'ensemble du système.




Architecture en étoile

Câbles de puissance

Architecture en anneau

(1) Prévoir 3 ports disponibles sur le switch pour un ordinateur (paramétrage et maintenance), un modem, le réseau client (2) Cette architecture ne garantit pas une continuité de service optimum.

Expérience Renault au Technocentre de Guyancourt

Jean-Marc Leprivey,

chef de projet infrastructure de recharge à la direction de l'immobilier et des services généraux France.

" Mon rôle est de déployer et d'exploiter les infrastructure et les services de recharge pour les véhicules électriques comme sur le site du Technocentre à Guyancourt.

Les premières bornes ont été installées en 2011. Face à l'utilisation croissante des véhicules électrique, nous continuons à installer des emplacements et bornes de recharge.

Pour ce premier parking, qu'on appelle P6, nous avions 50 bornes avec un équipement électrique dédié. Nous avons voulu utiliser cet équipement électrique pour ajouter 20 bornes de 22 kW supplémentaires compatibles avec une production d'énergie photoélectrique.

Notre problématique était que la puissance disponible avec l'infrastructure électrique existante permettait au mieux de pouvoir alimenter un tiers des 70 bornes souhaitées.

Par ailleurs, il était important pour moi de garantir un partage équitable de l'énergie entre les véhicules électriques

Renault et Schneider Electric travaille en étroite collaboration depuis des années et c'était donc naturellement que j'ai fait appel à Schneider Electric pour répondre à ce besoin. "

Mathieu Faure,

Business developper chez Schneider Electric

" Nos équipes ont travaillé ensemble pour apporter une solution technique sans surdimensionner les infrastructures existantes.

Je lui ai donc proposé de piloter son installation avec un système de gestion de l'énergie EVlink. Il permet d'allouer ou répartir en temps réel l'énergie aux différentes voitures en fonction de la puissance disponible. "

Jean-Marc Leprivey

" J'ai tout de suite été convaincu par cette solution parce qu'elle ne demandait pas de modifications sur les infrastructures électriques existantes et que cette solution me laisse de la souplesse pour répondre à une augmentation de la demande.

L'avantage du système EVlink et qu'il s'interface avec les outils de supervision et remonte les données d'utilisation de toutes les bornes.

Grâce à une interface intuitive, la mise en service a pris seulement deux jours.

Clairement cette nouvelle solution permet de renforcer l'offre de recharge. Outre les gains économiques, cette innovation m'a permis de lancer en confiance un nouveau déploiement de stations de recharge.

Merci à toute l'équipe EVlink de Schneider Electric pour m'avoir proposé la solution connectée de gestion d'énergie. Elle garantit une bonne expérience aux utilisateurs Renault."

se.com/fr

Schneider Electric France Direction Marketing Communication France 35, rue Joseph Monier - CS 30323 F92506 Rueil-Malmaison Cedex

Conseils: 0 825 012 999* Services: 0 810 102 424**

*Service 0,15€ /appel + prix de l'appel ** Service gratuit + prix de l'appel

© 2020 Schneider Electric. Tous droits réservés. Life Is On Schneider Electric est une marque commerciale appartenant à Schneider Electric SE, ses filiales et ses sociétés affiliées.

En raison de l'évolution des normes et du matériel, les caractéristiques indiquées par les textes et les images de ce document ne nous engagent qu'après confirmation par nos services.

Life Is On : la vie s'illumine - Réalisation : Schneider Electric, Emmanuel Froger - Photos : Schneider Electric Industries SAS, Fotoliat - Édition : ALTAVIA AURA - 343 410 999 RCS Saint-Etienne
Document imprimé sur papier écologique

04/2021

FRAED212998FR ART.059149